Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2017

01-04-2017 | Research Article

Dynamic DTI (dDTI) shows differing temporal activation patterns in post-exercise skeletal muscles

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2017

Login to get access

Abstract

Object

To assess post-exercise recovery of human calf muscles using dynamic diffusion tensor imaging (dDTI).

Materials and methods

DTI data (6 directions, b = 0 and 400 s/mm2) were acquired every 35 s from seven healthy men using a 3T MRI, prior to (4 volumes) and immediately following exercise (13 volumes, ~7.5 min). Exercise consisted of 5-min in-bore repetitive dorsiflexion-eversion foot motion with 0.78 kg resistance. Diffusion tensors calculated at each time point produced maps of mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and signal at b = 0 s/mm2 (S0). Region-of-interest (ROI) analysis was performed on five calf muscles: tibialis anterior (ATIB), extensor digitorum longus (EDL) peroneus longus (PER), soleus (SOL), and lateral gastrocnemius (LG).

Results

Active muscles (ATIB, EDL, PER) showed significantly elevated initial MD post-exercise, while predicted inactive muscles (SOL, LG) did not (p < 0.0001). The EDL showed a greater initial increase in MD (1.90 × 10−4mm2/s) than ATIB (1.03 × 10−4mm2/s) or PER (8.79 × 10−5 mm2/s) (p = 7.40 × 10−4), and remained significantly elevated across more time points than ATIB or PER. Significant increases were observed in post-exercise EDL S0 relative to other muscles across the majority of time points (p < 0.01 to p < 0.001).

Conclusions

dDTI can be used to differentiate exercise-induced changes between muscles. These differences are suggested to be related to differences in fiber composition.
Appendix
Available only for authorised users
Literature
2.
go back to reference Van Donkelaar CC, Kretzers LJ, Bovendeerd PH, Lataster LM, Nicolay K, Janssen JD, Drost MR (1999) Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat 194:79–88CrossRefPubMed Van Donkelaar CC, Kretzers LJ, Bovendeerd PH, Lataster LM, Nicolay K, Janssen JD, Drost MR (1999) Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat 194:79–88CrossRefPubMed
3.
go back to reference Kermarrec E, Budzik JF, Khalil C, Le Thuc V, Hancart-Destee C, Cotton A (2010) In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. Am J Roentgenol 195:W352–W356CrossRef Kermarrec E, Budzik JF, Khalil C, Le Thuc V, Hancart-Destee C, Cotton A (2010) In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. Am J Roentgenol 195:W352–W356CrossRef
4.
go back to reference Galban CJ, Maderwald S, Uffman K, de Greiff A, Ladd ME (2004) Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93:253–262CrossRefPubMed Galban CJ, Maderwald S, Uffman K, de Greiff A, Ladd ME (2004) Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93:253–262CrossRefPubMed
5.
go back to reference Sinha S, Sinha U, Edgerton VR (2006) In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 24:182–190CrossRefPubMed Sinha S, Sinha U, Edgerton VR (2006) In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 24:182–190CrossRefPubMed
6.
go back to reference Deux JF, Malzy P, Paragios N, Bassez G, Luciani A, Zerbib P, Roudot-Thoraval F, Vignaud A, Kobeiter H, Rahmouni A (2008) Assessment of calf muscle contraction by diffusion tensor imaging. Eur Radiol 18:2303–2310CrossRefPubMed Deux JF, Malzy P, Paragios N, Bassez G, Luciani A, Zerbib P, Roudot-Thoraval F, Vignaud A, Kobeiter H, Rahmouni A (2008) Assessment of calf muscle contraction by diffusion tensor imaging. Eur Radiol 18:2303–2310CrossRefPubMed
7.
go back to reference Hatakenaka M, Yabuuchi H, Sunami S, Kamitani T, Takayama Y, Nishikawa K, Honda H (2010) Joint position affects muscle proton diffusion: evaluation with a 3-T MR system. Am J Roent 194:W208–W211CrossRef Hatakenaka M, Yabuuchi H, Sunami S, Kamitani T, Takayama Y, Nishikawa K, Honda H (2010) Joint position affects muscle proton diffusion: evaluation with a 3-T MR system. Am J Roent 194:W208–W211CrossRef
8.
go back to reference Okamoto Y, Mori S, Kujiraoka Y, Katsuhiro N, Hirano Y, Minami M (2012) Diffusion property differences of the lower leg musculature between athletes and non-athletes using 1.5T MRI. Magn Reson Mater Phy (MAGMA) 25:277–284CrossRef Okamoto Y, Mori S, Kujiraoka Y, Katsuhiro N, Hirano Y, Minami M (2012) Diffusion property differences of the lower leg musculature between athletes and non-athletes using 1.5T MRI. Magn Reson Mater Phy (MAGMA) 25:277–284CrossRef
9.
go back to reference Nakai R, Azuma T, Sudo M, Urayama S, Takizawa O, Tsutsumi S (2008) MRI analysis of structural changes in skeletal muscles and surrounding tissues following long-term walking exercise with training equipment. J Appl Physiol 105:958–963CrossRefPubMed Nakai R, Azuma T, Sudo M, Urayama S, Takizawa O, Tsutsumi S (2008) MRI analysis of structural changes in skeletal muscles and surrounding tissues following long-term walking exercise with training equipment. J Appl Physiol 105:958–963CrossRefPubMed
10.
go back to reference Morvan D, Leroy-Willig A (1995) Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle. Magn Reson Imaging 13:943–948CrossRefPubMed Morvan D, Leroy-Willig A (1995) Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle. Magn Reson Imaging 13:943–948CrossRefPubMed
11.
go back to reference Nygren AT, Kaijser L (2002) Water exchange induced by unilateral exercise in active and inactive skeletal muscles. J Appl Physiol 93:1716–1722CrossRefPubMed Nygren AT, Kaijser L (2002) Water exchange induced by unilateral exercise in active and inactive skeletal muscles. J Appl Physiol 93:1716–1722CrossRefPubMed
12.
go back to reference Ababneh ZQ, Ababneh R, Maier SE, Winalski CS, Oshio K, Ababneh AM, Mulkern RV (2008) On the correlation between T2 and tissue diffusion coefficients in exercised muscle: quantitative measurements at 3T within the tibialis anterior. Magn Reson Mater Phy (MAGMA) 21:273–278CrossRef Ababneh ZQ, Ababneh R, Maier SE, Winalski CS, Oshio K, Ababneh AM, Mulkern RV (2008) On the correlation between T2 and tissue diffusion coefficients in exercised muscle: quantitative measurements at 3T within the tibialis anterior. Magn Reson Mater Phy (MAGMA) 21:273–278CrossRef
13.
go back to reference Morvan D (1995) In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise. Magn Reson Imaging 13:193–199CrossRefPubMed Morvan D (1995) In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise. Magn Reson Imaging 13:193–199CrossRefPubMed
14.
go back to reference Sigmund EE, Novikov DS, Sui D, Ukpebor O, Baete S, Babb JS, Liu K, Feiweier T, Kwon J, McGorty K, Bencardino J, Fieremans E (2014) Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients. NMR Biomed 27:519–528CrossRefPubMedPubMedCentral Sigmund EE, Novikov DS, Sui D, Ukpebor O, Baete S, Babb JS, Liu K, Feiweier T, Kwon J, McGorty K, Bencardino J, Fieremans E (2014) Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients. NMR Biomed 27:519–528CrossRefPubMedPubMedCentral
15.
go back to reference Okamoto Y, Kunimatsu A, Miki S, Shindo M, Niitsu M, Minami M (2008) Fraction anisotropy values of calf muscles in normative state after exercise: preliminary results. Magn Reson Med Sci 7:157–162CrossRefPubMed Okamoto Y, Kunimatsu A, Miki S, Shindo M, Niitsu M, Minami M (2008) Fraction anisotropy values of calf muscles in normative state after exercise: preliminary results. Magn Reson Med Sci 7:157–162CrossRefPubMed
16.
go back to reference Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ (2012) Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerv 46:42–50CrossRef Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ (2012) Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerv 46:42–50CrossRef
17.
go back to reference Yangisawa O, Kurihara T, Koayashi N, Fukubayashi T (2011) Strenuous resistance exercise effects on magnetic resonance diffusion parameters and muscle-tendon function in human skeletal muscle. J Magn Reson Imaging 34:887–894CrossRef Yangisawa O, Kurihara T, Koayashi N, Fukubayashi T (2011) Strenuous resistance exercise effects on magnetic resonance diffusion parameters and muscle-tendon function in human skeletal muscle. J Magn Reson Imaging 34:887–894CrossRef
18.
go back to reference Froeling M, Oudeman J, Strijkers GJ, Maas M, Drost MR, Nicolay K, Nederveen AJ (2015) Muscle changes detected with diffusion-tensor imaging after long distance running. Radiology 274:548–562CrossRefPubMed Froeling M, Oudeman J, Strijkers GJ, Maas M, Drost MR, Nicolay K, Nederveen AJ (2015) Muscle changes detected with diffusion-tensor imaging after long distance running. Radiology 274:548–562CrossRefPubMed
19.
go back to reference Baete SH, Cho GY, Sigmund EE (2015) Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T. NMR Biomed 28:667–678CrossRefPubMedPubMedCentral Baete SH, Cho GY, Sigmund EE (2015) Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T. NMR Biomed 28:667–678CrossRefPubMedPubMedCentral
20.
go back to reference Polgar J, Johnson MA, Weightman D, Appleton D (1973) Data on fibre size in thirty six human muscles: an autopsy study. J Neurol Sci 19:307–318CrossRefPubMed Polgar J, Johnson MA, Weightman D, Appleton D (1973) Data on fibre size in thirty six human muscles: an autopsy study. J Neurol Sci 19:307–318CrossRefPubMed
21.
go back to reference Basmajian JV, De Luca CJ (1985) Muscles alive: their functions revealed by electromyography hardcover, 5th edn. Williams & Wilkins, New York, p 561 Basmajian JV, De Luca CJ (1985) Muscles alive: their functions revealed by electromyography hardcover, 5th edn. Williams & Wilkins, New York, p 561
22.
go back to reference Andersen P, Kroese AJ (1978) Capillary supply in soleus and gastrocnemius muscles of man. Pflug Arch 375:245–249CrossRef Andersen P, Kroese AJ (1978) Capillary supply in soleus and gastrocnemius muscles of man. Pflug Arch 375:245–249CrossRef
23.
go back to reference Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci 18:111–129CrossRefPubMed Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci 18:111–129CrossRefPubMed
24.
go back to reference Snell RS (2012) Clinical anatomy by regions, 9th edn. Lippincott Williams & Wilkens, Philadelphia Snell RS (2012) Clinical anatomy by regions, 9th edn. Lippincott Williams & Wilkens, Philadelphia
25.
go back to reference Rockel C, Davis A, Wells G, Noseworthy MD (2012) Monitoring exercise-induced muscle changes using diffusion tensor imaging. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, Australia, p 1425 Rockel C, Davis A, Wells G, Noseworthy MD (2012) Monitoring exercise-induced muscle changes using diffusion tensor imaging. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, Australia, p 1425
26.
go back to reference Elzibak AH, Noseworthy MD (2014) Assessment of diffusion tensor imaging indices in calf muscles following postural change from standing to supine position. Magn Reson Mater Phy (MAGMA) 27:387–395CrossRef Elzibak AH, Noseworthy MD (2014) Assessment of diffusion tensor imaging indices in calf muscles following postural change from standing to supine position. Magn Reson Mater Phy (MAGMA) 27:387–395CrossRef
27.
28.
go back to reference Damon BM, Gregory CD, Hall KL, Stark HJ, Gulani V, Dawson MJ (2002) Intracellular acidification and volume increases explain R2 decreases in exercising muscle. Magn Reson Med 47:14–23CrossRefPubMed Damon BM, Gregory CD, Hall KL, Stark HJ, Gulani V, Dawson MJ (2002) Intracellular acidification and volume increases explain R2 decreases in exercising muscle. Magn Reson Med 47:14–23CrossRefPubMed
29.
go back to reference Rockel C, Noseworthy MD (2016) An exploration of diffusion tensor eigenvector variability within human calf muscles. J Magn Reson Imaging 43:190–202CrossRefPubMed Rockel C, Noseworthy MD (2016) An exploration of diffusion tensor eigenvector variability within human calf muscles. J Magn Reson Imaging 43:190–202CrossRefPubMed
30.
go back to reference Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385CrossRefPubMed Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385CrossRefPubMed
31.
go back to reference Rockel C, Noseworthy MD (2015) Modification of signal-to-noise calculation for use in spatial mapping. In: Proceedings of the 29th scientific meeting, European Society for Magnetic Resonance in Medicine and Biology, Edinburgh, Scotland, p 646 Rockel C, Noseworthy MD (2015) Modification of signal-to-noise calculation for use in spatial mapping. In: Proceedings of the 29th scientific meeting, European Society for Magnetic Resonance in Medicine and Biology, Edinburgh, Scotland, p 646
32.
go back to reference Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfers between blood and tissues during exercise. Acta Physiol Scand 85:258–269CrossRefPubMed Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfers between blood and tissues during exercise. Acta Physiol Scand 85:258–269CrossRefPubMed
33.
go back to reference Saab G, Thompson RT, Marsh GD (2000) Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 88:226–233PubMed Saab G, Thompson RT, Marsh GD (2000) Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 88:226–233PubMed
34.
go back to reference Okamoto Y, Kunimatsu A, Kono T, Nasu K, Sonobe J, Minami M (2010) Changes in MR diffusion properties during active muscle contraction in the calf. Magn Reson Med Sci 9:1–8CrossRefPubMed Okamoto Y, Kunimatsu A, Kono T, Nasu K, Sonobe J, Minami M (2010) Changes in MR diffusion properties during active muscle contraction in the calf. Magn Reson Med Sci 9:1–8CrossRefPubMed
35.
go back to reference Scheel M, von Roth P, Winkler T, Arampatzis A, Prokscha T, Hamm B, Diederichs G (2013) Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed 26:1220–1224CrossRefPubMed Scheel M, von Roth P, Winkler T, Arampatzis A, Prokscha T, Hamm B, Diederichs G (2013) Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed 26:1220–1224CrossRefPubMed
36.
go back to reference Fitts RH, Widrick JJ (1995) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–474 Fitts RH, Widrick JJ (1995) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–474
37.
go back to reference Edgarton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266CrossRef Edgarton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266CrossRef
38.
go back to reference Houmard JA, Smith R, Jenrasiak GL (1995) Relationship between MRI relaxation time and muscle fiber composition. J Appl Physiol 78:807–809PubMed Houmard JA, Smith R, Jenrasiak GL (1995) Relationship between MRI relaxation time and muscle fiber composition. J Appl Physiol 78:807–809PubMed
39.
go back to reference Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505CrossRefPubMed Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505CrossRefPubMed
40.
go back to reference Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA (1999) Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 9:814–820CrossRefPubMed Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA (1999) Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 9:814–820CrossRefPubMed
41.
go back to reference Fleckenstein JL, Canby RC, Parkey RW, Peshock RM (1988) Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. Am J Radiol 151:231–237 Fleckenstein JL, Canby RC, Parkey RW, Peshock RM (1988) Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. Am J Radiol 151:231–237
42.
go back to reference Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ (1990) Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol 25:480–485CrossRefPubMed Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ (1990) Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol 25:480–485CrossRefPubMed
43.
go back to reference Adams GR, Duvoisin MR, Dudlet GA (1992) Magnetic resonance imaging and electromyography as indexes of muscle function. J Appl Physiol 73:1578–1583PubMed Adams GR, Duvoisin MR, Dudlet GA (1992) Magnetic resonance imaging and electromyography as indexes of muscle function. J Appl Physiol 73:1578–1583PubMed
44.
go back to reference Price TB, Kamen G, Damon BM, Knight CA, Applegate B, Gore JC, Eward K, Signorile JF (2003) Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion. Magn Reson Imaging 21:853–861CrossRefPubMed Price TB, Kamen G, Damon BM, Knight CA, Applegate B, Gore JC, Eward K, Signorile JF (2003) Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion. Magn Reson Imaging 21:853–861CrossRefPubMed
45.
go back to reference Prior BM, Ploutz-Snyder LL, Cooper TG, Meyer RA (2001) Fiber type and metabolic dependence of T2 increases in stimulated rat muscles. J Appl Physiol 90:615–623PubMed Prior BM, Ploutz-Snyder LL, Cooper TG, Meyer RA (2001) Fiber type and metabolic dependence of T2 increases in stimulated rat muscles. J Appl Physiol 90:615–623PubMed
46.
go back to reference Tesch PA, Karlsson J (1985) Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol 59:1716–1720PubMed Tesch PA, Karlsson J (1985) Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol 59:1716–1720PubMed
Metadata
Title
Dynamic DTI (dDTI) shows differing temporal activation patterns in post-exercise skeletal muscles
Publication date
01-04-2017
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2017
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0587-7

Other articles of this Issue 2/2017

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2017 Go to the issue