Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2016

01-12-2016 | Research Article

Denoising of MR spectroscopic imaging data using statistical selection of principal components

Authors: Abas Abdoli, Radka Stoyanova, Andrew A. Maudsley

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 6/2016

Login to get access

Abstract

Objectives

To evaluate a new denoising method for MR spectroscopic imaging (MRSI) data based on selection of signal-related principal components (SSPCs) from principal components analysis (PCA).

Materials and methods

A PCA-based method was implemented for selection of signal-related PCs and denoising achieved by reconstructing the original data set utilizing only these PCs. Performance was evaluated using simulated MRSI data and two volumetric in vivo MRSIs of human brain, from a normal subject and a patient with a brain tumor, using variable signal-to-noise ratios (SNRs), metabolite peak areas, Cramer-Rao bounds (CRBs) of fitted metabolite peak areas and metabolite linewidth.

Results

In simulated data, SSPC determined the correct number of signal-related PCs. For in vivo studies, the SSPC denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared to the original data and two other methods for denoising. The method also performed very well in preserving the spectral linewidth and peak areas. However, this method performs better for regions that have larger numbers of similar spectra.

Conclusion

The proposed SSPC denoising improved the SNR and metabolite quantification uncertainty in MRSI, with minimal compromise of the spectral information, and can result in increased accuracy.
Literature
1.
go back to reference Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, Bloomer C (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559CrossRefPubMedPubMedCentral Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, Bloomer C (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559CrossRefPubMedPubMedCentral
2.
go back to reference Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4:490–530CrossRef Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4:490–530CrossRef
3.
go back to reference Bartha R, Drost DJ, Williamson PC (1999) Factors affecting the quantification of short echo in vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 12:205–216CrossRefPubMed Bartha R, Drost DJ, Williamson PC (1999) Factors affecting the quantification of short echo in vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 12:205–216CrossRefPubMed
4.
go back to reference Cancino-De-Greiff HF, Ramos-Garcia R, Lorenzo-Ginori JV (2002) Signal de-noising in magnetic resonance spectroscopy using wavelet transforms. Concepts Magn Reson 14:388–401CrossRef Cancino-De-Greiff HF, Ramos-Garcia R, Lorenzo-Ginori JV (2002) Signal de-noising in magnetic resonance spectroscopy using wavelet transforms. Concepts Magn Reson 14:388–401CrossRef
5.
go back to reference Donoho DL, Johnstone Jain M (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455CrossRef Donoho DL, Johnstone Jain M (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455CrossRef
6.
go back to reference Ojanen J, Miettinen T, Heikkonen J, Rissanen J (2004) Robust denoising of electrophoresis and mass spectrometry signals with minimum description length principle. FEBS Lett 570:107–113CrossRefPubMed Ojanen J, Miettinen T, Heikkonen J, Rissanen J (2004) Robust denoising of electrophoresis and mass spectrometry signals with minimum description length principle. FEBS Lett 570:107–113CrossRefPubMed
7.
go back to reference Laruelo A, Chaari L, Batatia H, Ken S, Rowland B, Laprie A, Tourneret JY (2013) Hybrid sparse regularization for magnetic resonance spectroscopy. IEEE Eng Med Biol Soc, Osaka, pp 6768–6771 Laruelo A, Chaari L, Batatia H, Ken S, Rowland B, Laprie A, Tourneret JY (2013) Hybrid sparse regularization for magnetic resonance spectroscopy. IEEE Eng Med Biol Soc, Osaka, pp 6768–6771
8.
go back to reference Ahmed OA (2005) New denoising scheme for magnetic resonance spectroscopy signals. IEEE Trans Med Imag 24:809–816CrossRef Ahmed OA (2005) New denoising scheme for magnetic resonance spectroscopy signals. IEEE Trans Med Imag 24:809–816CrossRef
9.
go back to reference Ahmed OA, Fahmy MM (2001) NMR signal enhancement via a new time-frequency transform. IEEE Trans Med Imag 20:1018–1025CrossRef Ahmed OA, Fahmy MM (2001) NMR signal enhancement via a new time-frequency transform. IEEE Trans Med Imag 20:1018–1025CrossRef
10.
go back to reference Eslami R, Jacob M (2009) Reduction of distortions in MRSI using a new signal model. IEEE Int Symp Biomed Imag, Boston, pp 438–441 Eslami R, Jacob M (2009) Reduction of distortions in MRSI using a new signal model. IEEE Int Symp Biomed Imag, Boston, pp 438–441
11.
go back to reference Nguyen HM, Haldar JP, Do MN, Zhi-Pei L (2010) Denoising of MR spectroscopic imaging data with spatial-spectral regularization. IEEE Int Symp Biomed Imag, Rotterdam, pp 720–723 Nguyen HM, Haldar JP, Do MN, Zhi-Pei L (2010) Denoising of MR spectroscopic imaging data with spatial-spectral regularization. IEEE Int Symp Biomed Imag, Rotterdam, pp 720–723
12.
go back to reference Lam F, Babacan SD, Haldar JP, Weiner MW, Schuff N, Liang ZP (2014) Denoising diffusion-weighted magnitude MR images using rank and edge constraints. Magn Reson Med 71:1272–1284CrossRefPubMedPubMedCentral Lam F, Babacan SD, Haldar JP, Weiner MW, Schuff N, Liang ZP (2014) Denoising diffusion-weighted magnitude MR images using rank and edge constraints. Magn Reson Med 71:1272–1284CrossRefPubMedPubMedCentral
13.
go back to reference Lin X, Changqing W, Wufan C, Xiaoyun L (2014) Denoising multi-channel images in parallel MRI by low rank matrix decomposition. IEEE Trans Appl Supercond 24:1–5CrossRef Lin X, Changqing W, Wufan C, Xiaoyun L (2014) Denoising multi-channel images in parallel MRI by low rank matrix decomposition. IEEE Trans Appl Supercond 24:1–5CrossRef
14.
go back to reference Zhou X, Yang C, Zhao H, Yu W (2014) Low-rank modeling and its applications in medical image analysis. ACM Comput Surv 47:1–35CrossRef Zhou X, Yang C, Zhao H, Yu W (2014) Low-rank modeling and its applications in medical image analysis. ACM Comput Surv 47:1–35CrossRef
15.
go back to reference Stoyanova R, Brown TR (2001) NMR spectral quantitation by principal component analysis. NMR Biomed 14:271–277CrossRefPubMed Stoyanova R, Brown TR (2001) NMR spectral quantitation by principal component analysis. NMR Biomed 14:271–277CrossRefPubMed
16.
go back to reference Stoyanova R, Querec TD, Brown TR, Patriotis C (2004) Normalization of single-channel DNA array data by principal component analysis. Bioinformatics 20:1772–1784CrossRefPubMed Stoyanova R, Querec TD, Brown TR, Patriotis C (2004) Normalization of single-channel DNA array data by principal component analysis. Bioinformatics 20:1772–1784CrossRefPubMed
17.
go back to reference Brown TR, Stoyanova R (1996) NMR spectral quantitation by principal-component analysis. II. Determination of frequency and phase shifts. J Magn Reson B 112:32–43CrossRefPubMed Brown TR, Stoyanova R (1996) NMR spectral quantitation by principal-component analysis. II. Determination of frequency and phase shifts. J Magn Reson B 112:32–43CrossRefPubMed
18.
go back to reference Stoyanova R, Brown TR (2002) NMR spectral quantitation by principal component analysis. III. A generalized procedure for determination of lineshape variations. J Magn Reson 154:163–175CrossRefPubMed Stoyanova R, Brown TR (2002) NMR spectral quantitation by principal component analysis. III. A generalized procedure for determination of lineshape variations. J Magn Reson 154:163–175CrossRefPubMed
19.
go back to reference Zhu XP, Du AT, Jahng GH, Soher BJ, Maudsley AA, Weiner MW, Schuff N (2003) Magnetic resonance spectroscopic imaging reconstruction with deformable shape-intensity models. Magn Reson Med 50:474–482CrossRefPubMedPubMedCentral Zhu XP, Du AT, Jahng GH, Soher BJ, Maudsley AA, Weiner MW, Schuff N (2003) Magnetic resonance spectroscopic imaging reconstruction with deformable shape-intensity models. Magn Reson Med 50:474–482CrossRefPubMedPubMedCentral
20.
go back to reference Nguyen HM, Peng X, Do MN, Liang ZP (2013) Denoising MR spectroscopic imaging data with low-rank approximations. IEEE Trans Biomed Eng 60:78–89CrossRefPubMed Nguyen HM, Peng X, Do MN, Liang ZP (2013) Denoising MR spectroscopic imaging data with low-rank approximations. IEEE Trans Biomed Eng 60:78–89CrossRefPubMed
21.
go back to reference Kasten J, Lazeyras F, Van De Ville D (2013) Data-driven MRSI spectral localization via low-rank component analysis. IEEE Trans Med Imag 32:1853–1863CrossRef Kasten J, Lazeyras F, Van De Ville D (2013) Data-driven MRSI spectral localization via low-rank component analysis. IEEE Trans Med Imag 32:1853–1863CrossRef
22.
go back to reference Shibata R (1976) Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika 63:117–126CrossRef Shibata R (1976) Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika 63:117–126CrossRef
23.
go back to reference Gastwirth JL, Gel YR, Miao W (2009) The impact of Levene’s test of equality of variances on statistical theory and practice. Stat Sci 24:343–360CrossRef Gastwirth JL, Gel YR, Miao W (2009) The impact of Levene’s test of equality of variances on statistical theory and practice. Stat Sci 24:343–360CrossRef
24.
go back to reference Maudsley AA, Darkazanli A, Alger JR et al (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral Maudsley AA, Darkazanli A, Alger JR et al (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral
25.
go back to reference Maudsley AA, Domenig C, Ramsay RE, Bowen BC (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88:127–138CrossRefPubMed Maudsley AA, Domenig C, Ramsay RE, Bowen BC (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88:127–138CrossRefPubMed
26.
go back to reference Sabati M, Sheriff S, Gu M, Wei J, Zhu H, Barker PB, Spielman DM, Alger JR, Maudsley AA (2015) Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging. Magn Reson Med 74:1209–1220CrossRefPubMed Sabati M, Sheriff S, Gu M, Wei J, Zhu H, Barker PB, Spielman DM, Alger JR, Maudsley AA (2015) Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging. Magn Reson Med 74:1209–1220CrossRefPubMed
27.
go back to reference Maudsley AA, Darkazanli A, Alger JR, Hall LO, Schuff N, Studholme C, Yu Y, Ebel A, Frew A, Goldgof D, Gu Y, Pagare R, Rousseau F, Sivasankaran K, Soher BJ, Weber P, Young K, Zhu X (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral Maudsley AA, Darkazanli A, Alger JR, Hall LO, Schuff N, Studholme C, Yu Y, Ebel A, Frew A, Goldgof D, Gu Y, Pagare R, Rousseau F, Sivasankaran K, Soher BJ, Weber P, Young K, Zhu X (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503CrossRefPubMedPubMedCentral
28.
go back to reference Metzger G, Hu X (1997) Application of interlaced Fourier transform to echo-planar spectroscopic imaging. J Magn Reson 125:166–170CrossRefPubMed Metzger G, Hu X (1997) Application of interlaced Fourier transform to echo-planar spectroscopic imaging. J Magn Reson 125:166–170CrossRefPubMed
29.
go back to reference Abdoli A, Maudsley AA (2015) Phased-array combination for MR spectroscopic imaging using a water reference. Magn Reson in Med. doi:10.1002/mrm.25992 Abdoli A, Maudsley AA (2015) Phased-array combination for MR spectroscopic imaging using a water reference. Magn Reson in Med. doi:10.​1002/​mrm.​25992
30.
go back to reference Haupt CI, Schuff N, Weiner MW, Maudsley AA (1996) Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med 35:678–687CrossRefPubMedPubMedCentral Haupt CI, Schuff N, Weiner MW, Maudsley AA (1996) Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med 35:678–687CrossRefPubMedPubMedCentral
31.
go back to reference Soher BJ, Young K, Govindaraju V, Maudsley AA (1998) Automated spectral analysis III: application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 40:822–831CrossRefPubMed Soher BJ, Young K, Govindaraju V, Maudsley AA (1998) Automated spectral analysis III: application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 40:822–831CrossRefPubMed
32.
go back to reference Cadzow JA (1988) Signal enhancement-a composite property mapping algorithm. IEEE Trans Acoust Speech Signal Process 36:49–62CrossRef Cadzow JA (1988) Signal enhancement-a composite property mapping algorithm. IEEE Trans Acoust Speech Signal Process 36:49–62CrossRef
Metadata
Title
Denoising of MR spectroscopic imaging data using statistical selection of principal components
Authors
Abas Abdoli
Radka Stoyanova
Andrew A. Maudsley
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 6/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0566-z

Other articles of this Issue 6/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2016 Go to the issue