Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016

01-04-2016 | Editorial

Tissue segmentation: a crucial tool for quantitative MRI and visualization of anatomical structures

Author: Fritz Schick

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2016

Login to get access

Abstract

Automatic or semi-automatic segmentation of tissue types or organs is well established for X-ray-based computed tomography, with its fixed grey-scale and tissue classes with well-established ranges of Hounsfield units. MRI is much more powerful with regard to soft tissue contrast and quantitative assessment of tissue properties (e.g., perfusion, diffusion, fat content), but the principle of signal generation and recording in MRI leads to inherent problems if simple threshold based segmentation procedures are applied. In this editorial in the special issue of MAGMA on tissue segmentation, a number of relevant methodical, scientific, and clinical aspects of reliable tissue segmentation using data recording by MRI are reported and discussed.
Literature
1.
go back to reference Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging 9:67–81CrossRefPubMed Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging 9:67–81CrossRefPubMed
2.
go back to reference He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, Liu C, Chen K, Yan F (2015) Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum Brain Mapp 36:4407–4420CrossRefPubMed He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, Liu C, Chen K, Yan F (2015) Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum Brain Mapp 36:4407–4420CrossRefPubMed
3.
go back to reference Machann J, Bachmann OP, Brechtel K, Dahl DB, Wietek B, Klumpp B, Häring HU, Claussen CD, Jacob S, Schick F (2003) Lipid content in the musculature of the lower leg assessed by fat selective MRI: intra- and interindividual differences and correlation with anthropometric and metabolic data. J Magn Reson Imaging 17:350–357CrossRefPubMed Machann J, Bachmann OP, Brechtel K, Dahl DB, Wietek B, Klumpp B, Häring HU, Claussen CD, Jacob S, Schick F (2003) Lipid content in the musculature of the lower leg assessed by fat selective MRI: intra- and interindividual differences and correlation with anthropometric and metabolic data. J Magn Reson Imaging 17:350–357CrossRefPubMed
4.
go back to reference Laforest R, Liu X (2008) Image quality with non-standard nuclides in PET. Q J Nucl Med Mol Imaging 52:151–158PubMed Laforest R, Liu X (2008) Image quality with non-standard nuclides in PET. Q J Nucl Med Mol Imaging 52:151–158PubMed
5.
go back to reference Kurjak A, Azumendi G, Andonotopo W, Salihagic-Kadic A (2007) Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 196:16–28CrossRefPubMed Kurjak A, Azumendi G, Andonotopo W, Salihagic-Kadic A (2007) Three- and four-dimensional ultrasonography for the structural and functional evaluation of the fetal face. Am J Obstet Gynecol 196:16–28CrossRefPubMed
6.
go back to reference Bydder GM, Kreel L (1979) The temperature dependence of computed tomography attenuation values. J Comput Assist Tomogr 3:506–510CrossRefPubMed Bydder GM, Kreel L (1979) The temperature dependence of computed tomography attenuation values. J Comput Assist Tomogr 3:506–510CrossRefPubMed
7.
go back to reference Prokop M, Shin HO, Schanz A, Schaefer-Prokop CM (1997) Use of maximum intensity projections in CT angiography: a basic review. Radiographics 17:433–451CrossRefPubMed Prokop M, Shin HO, Schanz A, Schaefer-Prokop CM (1997) Use of maximum intensity projections in CT angiography: a basic review. Radiographics 17:433–451CrossRefPubMed
8.
go back to reference Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT (2006) Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26:905–922CrossRefPubMed Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT (2006) Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26:905–922CrossRefPubMed
9.
go back to reference Hoult DI (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67CrossRefPubMed Hoult DI (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67CrossRefPubMed
10.
go back to reference Will S, Martirosian P, Würslin C, Schick F (2014) Automated segmentation and volumetric analysis of renal cortex, medulla, and pelvis based on non-contrast-enhanced T1- and T2-weighted MR images. Magn Reson Mater Phy 27:445–454CrossRef Will S, Martirosian P, Würslin C, Schick F (2014) Automated segmentation and volumetric analysis of renal cortex, medulla, and pelvis based on non-contrast-enhanced T1- and T2-weighted MR images. Magn Reson Mater Phy 27:445–454CrossRef
11.
go back to reference Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41:1558–1569CrossRefPubMed Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41:1558–1569CrossRefPubMed
12.
go back to reference Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL, Friboulet D, Bernard O, D’hooge J (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18:1115–1131CrossRefPubMed Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL, Friboulet D, Bernard O, D’hooge J (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18:1115–1131CrossRefPubMed
13.
go back to reference Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef
14.
go back to reference Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–208CrossRef Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–208CrossRef
15.
go back to reference Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21:193–199CrossRefPubMed Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21:193–199CrossRefPubMed
16.
go back to reference Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33:115–126CrossRefPubMed Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33:115–126CrossRefPubMed
17.
go back to reference Bai W, Shi W, Ledig C, Rueckert D (2015) Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19:98–109CrossRefPubMed Bai W, Shi W, Ledig C, Rueckert D (2015) Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19:98–109CrossRefPubMed
18.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMed
19.
go back to reference Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WEL, Jolesz FA, Black PM, Wells WM III (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13:967–975CrossRefPubMed Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WEL, Jolesz FA, Black PM, Wells WM III (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13:967–975CrossRefPubMed
20.
go back to reference Miyazaki Y, Glass L, Triplitt C, Wajcberg E, Mandarino LJ, DeFronzo RA (2002) Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 283:E1135–E1143CrossRefPubMed Miyazaki Y, Glass L, Triplitt C, Wajcberg E, Mandarino LJ, DeFronzo RA (2002) Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 283:E1135–E1143CrossRefPubMed
21.
go back to reference Teipel SJ, Grothe M, Lista S, Toschi N, Garaci FG, Hampel H (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 97:399–424CrossRefPubMed Teipel SJ, Grothe M, Lista S, Toschi N, Garaci FG, Hampel H (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 97:399–424CrossRefPubMed
22.
go back to reference Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, Lyketsos C, van Zijl PC, Miller MI, Mori S (2009) Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. Neuroimage 15(47):618–627CrossRef Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, Lyketsos C, van Zijl PC, Miller MI, Mori S (2009) Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. Neuroimage 15(47):618–627CrossRef
23.
go back to reference van’t Klooster R, de Koning PJ, Dehnavi RA, Tamsma JT, de Roos A, Reiber JH, van der Geest RJ (2012) Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images. J Magn Reson Imaging 35:156–165CrossRef van’t Klooster R, de Koning PJ, Dehnavi RA, Tamsma JT, de Roos A, Reiber JH, van der Geest RJ (2012) Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images. J Magn Reson Imaging 35:156–165CrossRef
24.
go back to reference Wang L, Chitiboi T, Meine H, Günther M, Hahn HK (2016) Principles and methods for automatic and semi-automatic tissue segmentation in MRI data. Magn Reson Mater Phy 29:95–110CrossRef Wang L, Chitiboi T, Meine H, Günther M, Hahn HK (2016) Principles and methods for automatic and semi-automatic tissue segmentation in MRI data. Magn Reson Mater Phy 29:95–110CrossRef
25.
go back to reference Helms G (2016) Segmentation of human brain using structural MRI. Magn Reson Mater Phy 29:111–124 Helms G (2016) Segmentation of human brain using structural MRI. Magn Reson Mater Phy 29:111–124
26.
go back to reference De Leener B, Taso M, Cohen-Adad J, Callot V (2016) Segmentation of the human spinal cord. Magn Reson Mater Phy 29:125–153 De Leener B, Taso M, Cohen-Adad J, Callot V (2016) Segmentation of the human spinal cord. Magn Reson Mater Phy 29:125–153
27.
go back to reference Peng P, Gooya A, Lekadir K, Shao L, Frangi A (2016) A review of recent advances in automatic MRI cardiac segmentation methods. Magn Reson Mater Phy 29:155–195 Peng P, Gooya A, Lekadir K, Shao L, Frangi A (2016) A review of recent advances in automatic MRI cardiac segmentation methods. Magn Reson Mater Phy 29:155–195
28.
go back to reference Rusinek H, Lim JC, Wake N, Seah J, Botterill E, Farquharson S, Lim RP (2016) Blanket method for renal segmentation. Magn Reson Mater Phy 29:197–206 Rusinek H, Lim JC, Wake N, Seah J, Botterill E, Farquharson S, Lim RP (2016) Blanket method for renal segmentation. Magn Reson Mater Phy 29:197–206
29.
go back to reference Pedoia V, Majumdar S, Link T (2016) Review: segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn Reson Mater Phy 29:207–221 Pedoia V, Majumdar S, Link T (2016) Review: segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn Reson Mater Phy 29:207–221
30.
go back to reference Sdika M, Tonson A, Le Fur Y, Cozzone PC, Bendahan D (2016) Multi-atlas-based fully automatic segmentation of individual muscles in rat leg. Magn Reson Mater Phy 29:223–235 Sdika M, Tonson A, Le Fur Y, Cozzone PC, Bendahan D (2016) Multi-atlas-based fully automatic segmentation of individual muscles in rat leg. Magn Reson Mater Phy 29:223–235
31.
go back to reference Karampatos S, Papaioannou A, Beattie KA, Maly MR, Chan A, Adachi JD, Pritchard JM (2016) The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images. Magn Reson Mater Phy 29:237–244 Karampatos S, Papaioannou A, Beattie KA, Maly MR, Chan A, Adachi JD, Pritchard JM (2016) The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images. Magn Reson Mater Phy 29:237–244
32.
go back to reference Le Troter A, Fouré A, Guye M, Confort-Gouny S, Mattei JP, Gondin J, Salort-Campana E, Bendahan D (2016) Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Magn Reson Mater Phy 29:245–257 Le Troter A, Fouré A, Guye M, Confort-Gouny S, Mattei JP, Gondin J, Salort-Campana E, Bendahan D (2016) Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Magn Reson Mater Phy 29:245–257
33.
go back to reference Hu HH, Chen J, Shen W (2016) Segmentation and quantification of adipose tissue by magnetic resonance imaging. Magn Reson Mater Phy 29:259–276 Hu HH, Chen J, Shen W (2016) Segmentation and quantification of adipose tissue by magnetic resonance imaging. Magn Reson Mater Phy 29:259–276
34.
go back to reference Bhanu Prakash KN, Srour H, Velan SS, Chuang KH (2016) A method for the automatic segmentation of brown adipose tissue. Magn Reson Mater Phy 29:287–299 Bhanu Prakash KN, Srour H, Velan SS, Chuang KH (2016) A method for the automatic segmentation of brown adipose tissue. Magn Reson Mater Phy 29:287–299
35.
go back to reference Bhanu Prakash KN, Verma SK, Yaligar J, Goggi J, Gopalan V, Lee SS, Tian X, Sugii S, Khee Shing Leow M, Bhakoo K, Velan SS (2016) Segmentation and characterization of interscapular brown adipose tissue in rats by multi-parametric magnetic resonance imaging. Magn Reson Mater Phy 29:277–286 Bhanu Prakash KN, Verma SK, Yaligar J, Goggi J, Gopalan V, Lee SS, Tian X, Sugii S, Khee Shing Leow M, Bhakoo K, Velan SS (2016) Segmentation and characterization of interscapular brown adipose tissue in rats by multi-parametric magnetic resonance imaging. Magn Reson Mater Phy 29:277–286
36.
go back to reference Ruhlmann V, Heusch P, Kühl H, Beiderwellen K, Antoch G, Forsting M, Bockisch A, Buchbender C, Quick HH (2016) Potential influence of Gadolinium contrast on image segmentation in MR-based attenuation correction with Dixon sequences in whole-body 18F-FDG PET/MR. Magn Reson Mater Phy 29:301–308 Ruhlmann V, Heusch P, Kühl H, Beiderwellen K, Antoch G, Forsting M, Bockisch A, Buchbender C, Quick HH (2016) Potential influence of Gadolinium contrast on image segmentation in MR-based attenuation correction with Dixon sequences in whole-body 18F-FDG PET/MR. Magn Reson Mater Phy 29:301–308
Metadata
Title
Tissue segmentation: a crucial tool for quantitative MRI and visualization of anatomical structures
Author
Fritz Schick
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0549-0

Other articles of this Issue 2/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016 Go to the issue