Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2016

01-06-2016 | Research Article

In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI

Authors: Marta Bianciardi, Nicola Toschi, Cornelius Eichner, Jonathan R. Polimeni, Kawin Setsompop, Emery N. Brown, Matti S. Hämäläinen, Bruce R. Rosen, Lawrence L. Wald

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2016

Login to get access

Abstract

Objective

Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data.

Materials and methods

We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s).

Results

The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work.

Conclusion

Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease, and other motor disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72CrossRefPubMed Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72CrossRefPubMed
2.
go back to reference Irimia A, Chambers MC, Torgerson CM, Van Horn JD (2012) Circular representation of human cortical networks for subject and population-level connectomic visualization. Neuroimage 60:1340–1351CrossRefPubMedPubMedCentral Irimia A, Chambers MC, Torgerson CM, Van Horn JD (2012) Circular representation of human cortical networks for subject and population-level connectomic visualization. Neuroimage 60:1340–1351CrossRefPubMedPubMedCentral
3.
go back to reference Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW, Barch DM, Ugurbil K, Van Essen DC (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17:666–682CrossRefPubMedPubMedCentral Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW, Barch DM, Ugurbil K, Van Essen DC (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17:666–682CrossRefPubMedPubMedCentral
5.
go back to reference Edlow BL, Haynes RL, Takahashi E, Klein JP, Cummings P, Benner T, Greer DM, Greenberg SM, Wu O, Kinney HC, Folkerth RD (2013) Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol 72:505–523CrossRefPubMedPubMedCentral Edlow BL, Haynes RL, Takahashi E, Klein JP, Cummings P, Benner T, Greer DM, Greenberg SM, Wu O, Kinney HC, Folkerth RD (2013) Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol 72:505–523CrossRefPubMedPubMedCentral
6.
go back to reference Hanihara T, Amano N, Takahashi T, Itoh Y, Yagishita S (1998) Hypertrophy of the inferior olivary nucleus in patients with progressive supranuclear palsy. Eur Neurol 39:97–102CrossRefPubMed Hanihara T, Amano N, Takahashi T, Itoh Y, Yagishita S (1998) Hypertrophy of the inferior olivary nucleus in patients with progressive supranuclear palsy. Eur Neurol 39:97–102CrossRefPubMed
7.
go back to reference Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE (2009) The brainstem and serotonin in the sudden infant death syndrome. Annu Rev Pathol 4:517–550CrossRefPubMedPubMedCentral Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE (2009) The brainstem and serotonin in the sudden infant death syndrome. Annu Rev Pathol 4:517–550CrossRefPubMedPubMedCentral
8.
11.
go back to reference Bianciardi M, Toschi N, Edlow BL, Eichner C, Setsompop K, Polimeni JR, Brown EN, Kinney HC, Rosen BR, Wald LL (2015) Toward an in vivo neuroimaging template of human brainstem nuclei of the ascending arousal, autonomic, and motor systems. Brain Connect 5:597–607CrossRefPubMed Bianciardi M, Toschi N, Edlow BL, Eichner C, Setsompop K, Polimeni JR, Brown EN, Kinney HC, Rosen BR, Wald LL (2015) Toward an in vivo neuroimaging template of human brainstem nuclei of the ascending arousal, autonomic, and motor systems. Brain Connect 5:597–607CrossRefPubMed
13.
go back to reference Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224CrossRefPubMedPubMedCentral Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224CrossRefPubMedPubMedCentral
14.
go back to reference Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52:571–582CrossRefPubMedPubMedCentral Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52:571–582CrossRefPubMedPubMedCentral
15.
go back to reference Satpute AB, Wager TD, Cohen-Adad J, Bianciardi M, Choi JK, Buhle JT, Wald LL, Barrett LF (2013) Identification of discrete functional subregions of the human periaqueductal gray. Proc Natl Acad Sci 110:17101–17106CrossRefPubMedPubMedCentral Satpute AB, Wager TD, Cohen-Adad J, Bianciardi M, Choi JK, Buhle JT, Wald LL, Barrett LF (2013) Identification of discrete functional subregions of the human periaqueductal gray. Proc Natl Acad Sci 110:17101–17106CrossRefPubMedPubMedCentral
16.
go back to reference Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed
17.
go back to reference Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed
19.
go back to reference Nioche C, Cabanis EA, Habas C (2009) Functional connectivity of the human red nucleus in the brain resting state at 3 T. AJNR Am J Neuroradiol 30:396–403CrossRefPubMed Nioche C, Cabanis EA, Habas C (2009) Functional connectivity of the human red nucleus in the brain resting state at 3 T. AJNR Am J Neuroradiol 30:396–403CrossRefPubMed
20.
go back to reference Habas C, Cabanis EA (2007) Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T. Neuroradiology 49:777–784CrossRefPubMed Habas C, Cabanis EA (2007) Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T. Neuroradiology 49:777–784CrossRefPubMed
21.
go back to reference Jang SH, Chang PH, Kwon HG (2012) The neural connectivity of the inferior olivary nucleus in the human brain: a diffusion tensor tractography study. Neurosci Lett 523:67–70CrossRefPubMed Jang SH, Chang PH, Kwon HG (2012) The neural connectivity of the inferior olivary nucleus in the human brain: a diffusion tensor tractography study. Neurosci Lett 523:67–70CrossRefPubMed
22.
go back to reference Lehericy S, Bardinet E, Poupon C, Vidailhet M, Francois C (2014) 7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord 29:1574–1581CrossRefPubMed Lehericy S, Bardinet E, Poupon C, Vidailhet M, Francois C (2014) 7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord 29:1574–1581CrossRefPubMed
23.
go back to reference Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS (2014) An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282C:23–48CrossRefPubMed Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS (2014) An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282C:23–48CrossRefPubMed
24.
go back to reference Menke RA, Jbabdi S, Miller KL, Matthews PM, Zarei M (2010) Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson’s disease. Neuroimage 52:1175–1180CrossRefPubMed Menke RA, Jbabdi S, Miller KL, Matthews PM, Zarei M (2010) Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson’s disease. Neuroimage 52:1175–1180CrossRefPubMed
25.
go back to reference Chowdhury R, Lambert C, Dolan RJ, Duzel E (2013) Parcellation of the human substantia nigra based on anatomical connectivity to the striatum. Neuroimage 81:191–198CrossRefPubMedPubMedCentral Chowdhury R, Lambert C, Dolan RJ, Duzel E (2013) Parcellation of the human substantia nigra based on anatomical connectivity to the striatum. Neuroimage 81:191–198CrossRefPubMedPubMedCentral
26.
go back to reference Benarroch EE (2008) Subthalamic nucleus and its connections: anatomic substrate for the network effects of deep brain stimulation. Neurology 70:1991–1995CrossRefPubMed Benarroch EE (2008) Subthalamic nucleus and its connections: anatomic substrate for the network effects of deep brain stimulation. Neurology 70:1991–1995CrossRefPubMed
27.
go back to reference Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R (2012) Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60:83–94CrossRefPubMedPubMedCentral Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R (2012) Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60:83–94CrossRefPubMedPubMedCentral
28.
go back to reference Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356CrossRefPubMedPubMedCentral Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356CrossRefPubMedPubMedCentral
29.
go back to reference Habas C, Kamdar N, Nguyen D, Keller K, Beckmann CF, Menon V, Greicius MD (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594CrossRefPubMedPubMedCentral Habas C, Kamdar N, Nguyen D, Keller K, Beckmann CF, Menon V, Greicius MD (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594CrossRefPubMedPubMedCentral
30.
go back to reference Paxinos G, Huang X, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier Academic Press, Amsterdam, pp 260–327CrossRef Paxinos G, Huang X, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier Academic Press, Amsterdam, pp 260–327CrossRef
31.
go back to reference Vertes R, Linley S (2008) Efferent and afferent connections of the dorsal and median raphe nuclei in the rat. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkhäuser Verlag, Basel, pp 69–102CrossRef Vertes R, Linley S (2008) Efferent and afferent connections of the dorsal and median raphe nuclei in the rat. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkhäuser Verlag, Basel, pp 69–102CrossRef
32.
go back to reference Dorocic IP, Furth Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlen M, Meletis K (2014) A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83:663–678CrossRef Dorocic IP, Furth Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlen M, Meletis K (2014) A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83:663–678CrossRef
33.
go back to reference Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci 100:253–258CrossRefPubMedPubMedCentral Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci 100:253–258CrossRefPubMedPubMedCentral
34.
go back to reference O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965CrossRefPubMedPubMedCentral O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965CrossRefPubMedPubMedCentral
35.
go back to reference Smith SM, Fox PT, Miller KL, Glahn DC, Foc PM, Mackay CE, Filippini N, Watikins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 106:13040–13045CrossRefPubMedPubMedCentral Smith SM, Fox PT, Miller KL, Glahn DC, Foc PM, Mackay CE, Filippini N, Watikins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 106:13040–13045CrossRefPubMedPubMedCentral
36.
go back to reference Beliveau V, Svarer C, Frokjaer VG, Knudsen GM, Greve DN, Fisher PM (2015) Functional connectivity of the dorsal and median raphe nuclei at rest. Neuroimage 116:187–195CrossRefPubMed Beliveau V, Svarer C, Frokjaer VG, Knudsen GM, Greve DN, Fisher PM (2015) Functional connectivity of the dorsal and median raphe nuclei at rest. Neuroimage 116:187–195CrossRefPubMed
38.
go back to reference Niblock MM, Kinney HC, Luce CJ, Belliveau RA, Filiano JJ (2004) The development of the medullary serotonergic system in the piglet. Auton Neurosci 110:65–80CrossRefPubMed Niblock MM, Kinney HC, Luce CJ, Belliveau RA, Filiano JJ (2004) The development of the medullary serotonergic system in the piglet. Auton Neurosci 110:65–80CrossRefPubMed
39.
go back to reference Gruber P, Gould DJ (2010) The red nucleus: past, present, and future. Neuroanatomy 9:1–3 Gruber P, Gould DJ (2010) The red nucleus: past, present, and future. Neuroanatomy 9:1–3
40.
go back to reference Beissner F, Schumann A, Brunn F, Eisenträger D, Bär KJ (2014) Advances in functional magnetic resonance imaging of the human brainstem. Neuroimage 86:91–98CrossRefPubMed Beissner F, Schumann A, Brunn F, Eisenträger D, Bär KJ (2014) Advances in functional magnetic resonance imaging of the human brainstem. Neuroimage 86:91–98CrossRefPubMed
41.
go back to reference Beissner F, Polimeni JR, Biancardi M, Renvall V, Eichner C, Napadow V, Wald LL (2014) Imaging the human brainstem at 7 Tesla using multimodal echo-planar imaging. In: Proceedings of the 22nd scientific meeting, international society for magnetic resonance in medicine, Milan, p 1413 Beissner F, Polimeni JR, Biancardi M, Renvall V, Eichner C, Napadow V, Wald LL (2014) Imaging the human brainstem at 7 Tesla using multimodal echo-planar imaging. In: Proceedings of the 22nd scientific meeting, international society for magnetic resonance in medicine, Milan, p 1413
42.
go back to reference Bianciardi M, Toschi N, Eichner C, Setsompop K, Polimeni JR, Rosen BR, Wald LL (2015) Validation of in vivo structural template of human brainstem nuclei by fMRI at 7 Tesla. Proceedings of the 23rd scientific meeting, international society for magnetic resonance in medicine, Toronto, p 272 Bianciardi M, Toschi N, Eichner C, Setsompop K, Polimeni JR, Rosen BR, Wald LL (2015) Validation of in vivo structural template of human brainstem nuclei by fMRI at 7 Tesla. Proceedings of the 23rd scientific meeting, international society for magnetic resonance in medicine, Toronto, p 272
43.
go back to reference Craddock RC, James GS, Holtzheimer PE 3rd, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33:1914–1928CrossRefPubMed Craddock RC, James GS, Holtzheimer PE 3rd, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33:1914–1928CrossRefPubMed
44.
go back to reference Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, Duff E, Feinberg DA, Griffanti L, Harms MP, Kelly M, Laumann T, Miller KL, Moeller S, Petersen S, Power J, Salimi-Khorshidi G, Snyder AZ, Vu AT, Woolrich MW, Xu J, Yacoub E, Ugurbil K, Van Essen DC, Glasser MF, WU-Minn HCP Consortium (2013) Resting-state fMRI in the human connectome project. Neuroimage 80:144–168CrossRefPubMedPubMedCentral Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, Duff E, Feinberg DA, Griffanti L, Harms MP, Kelly M, Laumann T, Miller KL, Moeller S, Petersen S, Power J, Salimi-Khorshidi G, Snyder AZ, Vu AT, Woolrich MW, Xu J, Yacoub E, Ugurbil K, Van Essen DC, Glasser MF, WU-Minn HCP Consortium (2013) Resting-state fMRI in the human connectome project. Neuroimage 80:144–168CrossRefPubMedPubMedCentral
45.
go back to reference Chen T, Ryali S, Qin S, Menon V (2013) Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts. Neuroimage 82:87–100CrossRefPubMed Chen T, Ryali S, Qin S, Menon V (2013) Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts. Neuroimage 82:87–100CrossRefPubMed
46.
go back to reference Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH (2009) Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magn Reson Imaging 27:1019–1029CrossRefPubMedPubMedCentral Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH (2009) Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magn Reson Imaging 27:1019–1029CrossRefPubMedPubMedCentral
47.
go back to reference Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757CrossRefPubMed Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757CrossRefPubMed
48.
go back to reference Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, Douand G, Jbabdi S, Behrens TE, Rabiner EA, Jenkinson M, Gunn RN (2014) Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex 24:1165–1177CrossRefPubMedPubMedCentral Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, Douand G, Jbabdi S, Behrens TE, Rabiner EA, Jenkinson M, Gunn RN (2014) Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex 24:1165–1177CrossRefPubMedPubMedCentral
49.
go back to reference Giacino JT, Fins JJ, Laureys S, Schiff ND (2014) Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 10:99–114CrossRefPubMed Giacino JT, Fins JJ, Laureys S, Schiff ND (2014) Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 10:99–114CrossRefPubMed
50.
go back to reference Pellicano C, Benincasa D, Pisani V, Buttarelli FR, Giovannelli M, Pontieri FE (2007) Prodromal nonmotor symptoms of Parkinson’s disease. Neuropsychiatr Dis Treat 3:145–152CrossRefPubMedPubMedCentral Pellicano C, Benincasa D, Pisani V, Buttarelli FR, Giovannelli M, Pontieri FE (2007) Prodromal nonmotor symptoms of Parkinson’s disease. Neuropsychiatr Dis Treat 3:145–152CrossRefPubMedPubMedCentral
51.
go back to reference Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W, Ziemssen T (2012) Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov Disord 27:617–626CrossRefPubMed Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W, Ziemssen T (2012) Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov Disord 27:617–626CrossRefPubMed
52.
54.
go back to reference Pandit AS, Robinson E, Aljabar P, Ball G, Gousias IS, Wang Z, Hajnal JV, Rueckert D, Counsell SJ, Montana G, Edwards AD (2013) Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth. Cereb Cortex 24:2324–2333CrossRefPubMed Pandit AS, Robinson E, Aljabar P, Ball G, Gousias IS, Wang Z, Hajnal JV, Rueckert D, Counsell SJ, Montana G, Edwards AD (2013) Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth. Cereb Cortex 24:2324–2333CrossRefPubMed
55.
go back to reference Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego
56.
go back to reference Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM (2009) Duvernoy’s atlas of the human brain stem and cerebellum: high-field MRI, surface anatomy, internal structure, vascularization and 3D sectional anatomy. Springer, New YorkCrossRef Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM (2009) Duvernoy’s atlas of the human brain stem and cerebellum: high-field MRI, surface anatomy, internal structure, vascularization and 3D sectional anatomy. Springer, New YorkCrossRef
57.
go back to reference McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The human connectome project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245CrossRefPubMed McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The human connectome project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245CrossRefPubMed
58.
go back to reference Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53:1–15CrossRefPubMedPubMedCentral Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53:1–15CrossRefPubMedPubMedCentral
59.
go back to reference Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed
60.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289CrossRefPubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289CrossRefPubMed
Metadata
Title
In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI
Authors
Marta Bianciardi
Nicola Toschi
Cornelius Eichner
Jonathan R. Polimeni
Kawin Setsompop
Emery N. Brown
Matti S. Hämäläinen
Bruce R. Rosen
Lawrence L. Wald
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0546-3

Other articles of this Issue 3/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2016 Go to the issue