Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016

Open Access 01-04-2016 | Review Article

A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging

Authors: Peng Peng, Karim Lekadir, Ali Gooya, Ling Shao, Steffen E. Petersen, Alejandro F. Frangi

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2016

Login to get access

Abstract

Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.
Literature
1.
go back to reference Alwan A (2011) Global status report on noncommunicable diseases 2010. World Health Organization, Geneva Alwan A (2011) Global status report on noncommunicable diseases 2010. World Health Organization, Geneva
2.
go back to reference Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva
4.
go back to reference Myerson SG, Francis J, Neubauer S (2013) Cardiovascular magnetic resonance. OUP, Oxford Myerson SG, Francis J, Neubauer S (2013) Cardiovascular magnetic resonance. OUP, Oxford
5.
go back to reference Attili AK, Schuster A, Nagel E, Reiber JH, van der Geest RJ (2010) Quantification in cardiac MRI: advances in image acquisition and processing. Int J Cardiovasc Imaging 26(1):27–40PubMedPubMedCentralCrossRef Attili AK, Schuster A, Nagel E, Reiber JH, van der Geest RJ (2010) Quantification in cardiac MRI: advances in image acquisition and processing. Int J Cardiovasc Imaging 26(1):27–40PubMedPubMedCentralCrossRef
6.
go back to reference Frangi AF, Niessen WJ, Viergever M (2001) Three-dimensional modeling for functional analysis of cardiac images, a review. IEEE Trans Med Imaging 20(1):2–5PubMedCrossRef Frangi AF, Niessen WJ, Viergever M (2001) Three-dimensional modeling for functional analysis of cardiac images, a review. IEEE Trans Med Imaging 20(1):2–5PubMedCrossRef
7.
go back to reference Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563PubMedCrossRef Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563PubMedCrossRef
8.
go back to reference Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117(9):966–989CrossRef Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117(9):966–989CrossRef
9.
go back to reference Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184PubMedCrossRef Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184PubMedCrossRef
10.
go back to reference Gupta V, Kirişli HA, Hendriks EA, van der Geest RJ, van de Giessen M, Niessen W, Reiber JH, Lelieveldt BP (2012) Cardiac MR perfusion image processing techniques: a survey. Med Image Anal 16(4):767–785PubMedCrossRef Gupta V, Kirişli HA, Hendriks EA, van der Geest RJ, van de Giessen M, Niessen W, Reiber JH, Lelieveldt BP (2012) Cardiac MR perfusion image processing techniques: a survey. Med Image Anal 16(4):767–785PubMedCrossRef
11.
go back to reference Petitjean C, Zuluaga MA, Bai W, Dacher JN, Grosgeorge D, Caudron J et al (2015) Right ventricle segmentation from cardiac MRI: a collation study. Med Image Anal 19(1):187–202PubMedCrossRef Petitjean C, Zuluaga MA, Bai W, Dacher JN, Grosgeorge D, Caudron J et al (2015) Right ventricle segmentation from cardiac MRI: a collation study. Med Image Anal 19(1):187–202PubMedCrossRef
12.
go back to reference Tobon-Gomez C, Geers A, Peters J, Weese J, Pinto K, Karim R et al (2015) Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans Med Imaging 34(7):1460–1473CrossRef Tobon-Gomez C, Geers A, Peters J, Weese J, Pinto K, Karim R et al (2015) Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans Med Imaging 34(7):1460–1473CrossRef
13.
go back to reference Zhuang X (2013) Challenges and methodologies of fully automatic whole heart segmentation: a review. J Healthc Eng 4(3):371–408PubMedCrossRef Zhuang X (2013) Challenges and methodologies of fully automatic whole heart segmentation: a review. J Healthc Eng 4(3):371–408PubMedCrossRef
14.
go back to reference Afshin M, Ayed IB, Punithakumar K, Law M, Islam A, Goela A et al (2014) Regional assessment of cardiac left ventricular myocardial function via MRI statistical features. IEEE Trans Med Imaging 33(2):481–494PubMedCrossRef Afshin M, Ayed IB, Punithakumar K, Law M, Islam A, Goela A et al (2014) Regional assessment of cardiac left ventricular myocardial function via MRI statistical features. IEEE Trans Med Imaging 33(2):481–494PubMedCrossRef
15.
go back to reference Wang Z, Salah MB, Gu B, Islam A, Goela A, Li S (2014) Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans Biomed Eng 61(4):1251–1260PubMedCrossRef Wang Z, Salah MB, Gu B, Islam A, Goela A, Li S (2014) Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans Biomed Eng 61(4):1251–1260PubMedCrossRef
17.
go back to reference Zhen X, Islam A, Bhaduri M, Chan I, Li S (2015) Direct and simultaneous four-chamber volume estimation by multi-output regression. In: Medical image computing and computer-assisted intervention—MICCAI. Springer, Berlin Zhen X, Islam A, Bhaduri M, Chan I, Li S (2015) Direct and simultaneous four-chamber volume estimation by multi-output regression. In: Medical image computing and computer-assisted intervention—MICCAI. Springer, Berlin
18.
go back to reference Zhong L, Su Y, Gobeawan L, Sola S, Tan RS, Navia JL et al (2011) Impact of surgical ventricular restoration on ventricular shape, wall stress, and function in heart failure patients. Am J Physiol Heart Circ Physiol 300(5):H1653–H1660PubMedPubMedCentralCrossRef Zhong L, Su Y, Gobeawan L, Sola S, Tan RS, Navia JL et al (2011) Impact of surgical ventricular restoration on ventricular shape, wall stress, and function in heart failure patients. Am J Physiol Heart Circ Physiol 300(5):H1653–H1660PubMedPubMedCentralCrossRef
19.
go back to reference Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 178(2):357–360PubMedCrossRef Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 178(2):357–360PubMedCrossRef
20.
go back to reference Nayak KS, Nielsen JF, Bernstein MA, Markl M, Gatehouse PD, Botnar RM et al (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17(1):1–26CrossRef Nayak KS, Nielsen JF, Bernstein MA, Markl M, Gatehouse PD, Botnar RM et al (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17(1):1–26CrossRef
21.
go back to reference Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging–a method for non-invasive assessment of myocardial motion. Radiology 169(1):59–63PubMedCrossRef Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging–a method for non-invasive assessment of myocardial motion. Radiology 169(1):59–63PubMedCrossRef
22.
go back to reference Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171(3):841–845PubMedCrossRef Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171(3):841–845PubMedCrossRef
23.
go back to reference Ibrahim ESH (2011) Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques–pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 13(1):36PubMedCentralCrossRef Ibrahim ESH (2011) Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques–pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 13(1):36PubMedCentralCrossRef
24.
go back to reference Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JA (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11(55):56–57 Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JA (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11(55):56–57
25.
go back to reference Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Image Anal 9(4):376–393PubMedCrossRef Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Image Anal 9(4):376–393PubMedCrossRef
26.
go back to reference Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137(1):247–252PubMedPubMedCentralCrossRef Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137(1):247–252PubMedPubMedCentralCrossRef
27.
go back to reference Osman NF, Sampath S, Atalar E, Prince JL (2001) Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 46(2):324–334PubMedCrossRef Osman NF, Sampath S, Atalar E, Prince JL (2001) Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 46(2):324–334PubMedCrossRef
28.
go back to reference Neizel M, Lossnitzer D, Korosoglou G, Schäufele T, Lewien A, Steen H et al (2009) Strain-encoded (SENC) magnetic resonance imaging to evaluate regional heterogeneity of myocardial strain in healthy volunteers: comparison with conventional tagging. J Magn Reson Imaging 29(1):99–105PubMedCrossRef Neizel M, Lossnitzer D, Korosoglou G, Schäufele T, Lewien A, Steen H et al (2009) Strain-encoded (SENC) magnetic resonance imaging to evaluate regional heterogeneity of myocardial strain in healthy volunteers: comparison with conventional tagging. J Magn Reson Imaging 29(1):99–105PubMedCrossRef
29.
go back to reference Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D et al (2013) Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol 200(1):24CrossRef Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D et al (2013) Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol 200(1):24CrossRef
30.
go back to reference Motwani M, Maredia N, Fairbairn TA, Kozerke S, Radjenovic A, Greenwood JP, Plein S (2012) High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging 5(3):306–313PubMedCrossRef Motwani M, Maredia N, Fairbairn TA, Kozerke S, Radjenovic A, Greenwood JP, Plein S (2012) High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging 5(3):306–313PubMedCrossRef
31.
go back to reference Saeed M, Wagner S, Wendland MF, Derugin N, Finkbeiner WE, Higgins CB (1989) Occlusive and reperfused myocardial infarcts: differentiation with Mn-DPDP-enhanced MR imaging. Radiology 172(1):59–64PubMedCrossRef Saeed M, Wagner S, Wendland MF, Derugin N, Finkbeiner WE, Higgins CB (1989) Occlusive and reperfused myocardial infarcts: differentiation with Mn-DPDP-enhanced MR imaging. Radiology 172(1):59–64PubMedCrossRef
32.
go back to reference Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging: HOW I DO…. J Cardiovasc Magn Reson 5(3):505–514PubMedCrossRef Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging: HOW I DO…. J Cardiovasc Magn Reson 5(3):505–514PubMedCrossRef
33.
go back to reference Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8(3):417–426PubMedCrossRef Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8(3):417–426PubMedCrossRef
34.
go back to reference Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7(5):775–782PubMedCrossRef Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7(5):775–782PubMedCrossRef
35.
go back to reference Kawel N, Turkbey EB, Carr JJ, Eng J, Gomes AS, Hundley WG et al (2012) Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 5(4):500–508PubMedPubMedCentralCrossRef Kawel N, Turkbey EB, Carr JJ, Eng J, Gomes AS, Hundley WG et al (2012) Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 5(4):500–508PubMedPubMedCentralCrossRef
36.
go back to reference Ubachs J, Heiberg E, Steding K, Arheden H (2009) Normal values for wall thickening by magnetic resonance imaging. J Cardiovasc Magn Reson 11(1):1–2CrossRef Ubachs J, Heiberg E, Steding K, Arheden H (2009) Normal values for wall thickening by magnetic resonance imaging. J Cardiovasc Magn Reson 11(1):1–2CrossRef
37.
go back to reference Maceira AM, Prasad SK, Khan M et al (2006) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27(23):2879–2888PubMedCrossRef Maceira AM, Prasad SK, Khan M et al (2006) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27(23):2879–2888PubMedCrossRef
38.
go back to reference Prioli A, Marino P, Lanzoni L, Zardini P (1998) Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. Am J Cardiol 82(6):756–761PubMedCrossRef Prioli A, Marino P, Lanzoni L, Zardini P (1998) Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. Am J Cardiol 82(6):756–761PubMedCrossRef
39.
go back to reference Gutman J, Wang YS, Wahr D, Schiller NB (1983) Normal left atrial function determined by 2-dimensional echocardiography. Am J Cardiol 51(2):336–340PubMedCrossRef Gutman J, Wang YS, Wahr D, Schiller NB (1983) Normal left atrial function determined by 2-dimensional echocardiography. Am J Cardiol 51(2):336–340PubMedCrossRef
40.
go back to reference Maceira AM, Cosín-Sales J, Roughton M, Prasad SK, Pennell DJ (2013) Reference right atrial dimensions and volume estimation by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:29PubMedPubMedCentralCrossRef Maceira AM, Cosín-Sales J, Roughton M, Prasad SK, Pennell DJ (2013) Reference right atrial dimensions and volume estimation by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:29PubMedPubMedCentralCrossRef
41.
go back to reference Sievers B, Kirchberg S, Bakan A, Franken U, Trappe HJ (2004) Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 6(1):9–16PubMedCrossRef Sievers B, Kirchberg S, Bakan A, Franken U, Trappe HJ (2004) Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 6(1):9–16PubMedCrossRef
42.
go back to reference Papavassiliu T, Kühl HP, Schröder M, Süselbeck T, Bondarenko O, Böhm CK et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236(1):57–64PubMedCrossRef Papavassiliu T, Kühl HP, Schröder M, Süselbeck T, Bondarenko O, Böhm CK et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236(1):57–64PubMedCrossRef
43.
go back to reference Vogel-Claussen J, Finn JP, Gomes AS, Hundley GW, Jerosch-Herold M, Pearson G et al (2006) Left ventricular papillary muscle mass: relationship to left ventricular mass and volumes by magnetic resonance imaging. J Comput Assist Tomogr 30(3):426–432PubMedCrossRef Vogel-Claussen J, Finn JP, Gomes AS, Hundley GW, Jerosch-Herold M, Pearson G et al (2006) Left ventricular papillary muscle mass: relationship to left ventricular mass and volumes by magnetic resonance imaging. J Comput Assist Tomogr 30(3):426–432PubMedCrossRef
44.
go back to reference Kirschbaum S, Aben JP, Baks T, Moelker A, Gruszczynska K, Krestin GP et al (2008) Accurate automatic papillary muscle identification for quantitative left ventricle mass measurements in cardiac magnetic resonance imaging. Acad Radiol 15(10):1227–1233PubMedCrossRef Kirschbaum S, Aben JP, Baks T, Moelker A, Gruszczynska K, Krestin GP et al (2008) Accurate automatic papillary muscle identification for quantitative left ventricle mass measurements in cardiac magnetic resonance imaging. Acad Radiol 15(10):1227–1233PubMedCrossRef
45.
go back to reference Janik M, Cham MD, Ross MI, Wang Y, Codella N, Min JK et al (2008) Effects of papillary muscles and trabeculae on left ventricular quantification: increased impact of methodological variability in patients with left ventricular hypertrophy. J Hypertens 26(8):1677–1685PubMedCrossRef Janik M, Cham MD, Ross MI, Wang Y, Codella N, Min JK et al (2008) Effects of papillary muscles and trabeculae on left ventricular quantification: increased impact of methodological variability in patients with left ventricular hypertrophy. J Hypertens 26(8):1677–1685PubMedCrossRef
46.
go back to reference Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M et al (2006) Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. Am J Roentgenol 186(6):S357–S365CrossRef Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M et al (2006) Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. Am J Roentgenol 186(6):S357–S365CrossRef
47.
go back to reference Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15(35):10–1186 Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15(35):10–1186
48.
go back to reference Boudoulas H, Mantzouratos D, Sohn YH, Weissler AM (1986) Left ventricular mass and systolic performance in chronic systemic hypertension. Am J Cardiol 57(4):232–237PubMedCrossRef Boudoulas H, Mantzouratos D, Sohn YH, Weissler AM (1986) Left ventricular mass and systolic performance in chronic systemic hypertension. Am J Cardiol 57(4):232–237PubMedCrossRef
49.
go back to reference Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F (2000) Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 35(2):580–586PubMedCrossRef Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F (2000) Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 35(2):580–586PubMedCrossRef
50.
go back to reference Lorell BH, Carabello BA (2000) Left ventricular hypertrophy pathogenesis, detection, and prognosis. Circulation 102(4):470–479PubMedCrossRef Lorell BH, Carabello BA (2000) Left ventricular hypertrophy pathogenesis, detection, and prognosis. Circulation 102(4):470–479PubMedCrossRef
51.
go back to reference Carlsson M, Andersson R, Bloch KM, Steding-Ehrenborg K, Mosén H, Stahlberg F et al (2012) Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson 28(14):51CrossRef Carlsson M, Andersson R, Bloch KM, Steding-Ehrenborg K, Mosén H, Stahlberg F et al (2012) Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson 28(14):51CrossRef
52.
go back to reference Geest RJVD (2011) Automated image analysis techniques for cardiovascular magnetic resonance imaging. Department of Radiology, Division of Image Processing (LKEB), Faculty of Medicine/Leiden University Medical Center (LUMC), Leiden University Geest RJVD (2011) Automated image analysis techniques for cardiovascular magnetic resonance imaging. Department of Radiology, Division of Image Processing (LKEB), Faculty of Medicine/Leiden University Medical Center (LUMC), Leiden University
53.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542PubMedCrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542PubMedCrossRef
54.
go back to reference Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101(25):2981–2988PubMedCrossRef Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101(25):2981–2988PubMedCrossRef
55.
go back to reference Gorcsan J, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58(14):1401–1413PubMedCrossRef Gorcsan J, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58(14):1401–1413PubMedCrossRef
56.
go back to reference van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28(10):1250–1257PubMedCrossRef van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28(10):1250–1257PubMedCrossRef
57.
go back to reference Laukkanen JA, Kurl S, Eränen J, Huttunen M, Salonen JT (2005) Left atrium size and the risk of cardiovascular death in middle-aged men. Arch Intern Med 165(15):1788–1793PubMedCrossRef Laukkanen JA, Kurl S, Eränen J, Huttunen M, Salonen JT (2005) Left atrium size and the risk of cardiovascular death in middle-aged men. Arch Intern Med 165(15):1788–1793PubMedCrossRef
58.
go back to reference Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D (1995) Left atrial size and the risk of stroke and death The Framingham Heart Study. Circulation 92(4):835–841PubMedCrossRef Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D (1995) Left atrial size and the risk of stroke and death The Framingham Heart Study. Circulation 92(4):835–841PubMedCrossRef
59.
go back to reference Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, Tsang TS (2006) Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol 47(12):2357–2363PubMedCrossRef Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, Tsang TS (2006) Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol 47(12):2357–2363PubMedCrossRef
60.
go back to reference Tsang TS, Abhayaratna WP, Barnes ME, Miyasaka Y, Gersh BJ, Bailey KR et al (2006) Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? J Am Coll Cardiol 47(5):1018–1023PubMedCrossRef Tsang TS, Abhayaratna WP, Barnes ME, Miyasaka Y, Gersh BJ, Bailey KR et al (2006) Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? J Am Coll Cardiol 47(5):1018–1023PubMedCrossRef
61.
go back to reference Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB (2002) Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 90(12):1284–1289PubMedCrossRef Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB (2002) Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 90(12):1284–1289PubMedCrossRef
62.
go back to reference Yang WI, Shim CY, Kim YJ, Kim SA, Rhee SJ, Choi EY et al (2009) Left atrial volume index: a predictor of adverse outcome in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 22(12):1338–1343PubMedCrossRef Yang WI, Shim CY, Kim YJ, Kim SA, Rhee SJ, Choi EY et al (2009) Left atrial volume index: a predictor of adverse outcome in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 22(12):1338–1343PubMedCrossRef
63.
go back to reference Tsang TS, Barnes ME, Bailey KR, Leibson CL, Montgomery SC, Takemoto Y et al (2001) Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin Proc 76(5):467–475PubMedCrossRef Tsang TS, Barnes ME, Bailey KR, Leibson CL, Montgomery SC, Takemoto Y et al (2001) Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin Proc 76(5):467–475PubMedCrossRef
64.
go back to reference Barnes ME, Miyasaka Y, Seward JB, Gersh BJ, Rosales AG, Bailey KR et al (2004) Left atrial volume in the prediction of first ischemic stroke in an elderly cohort without atrial fibrillation. Mayo Clin Proc 79(8):1008–1014PubMedCrossRef Barnes ME, Miyasaka Y, Seward JB, Gersh BJ, Rosales AG, Bailey KR et al (2004) Left atrial volume in the prediction of first ischemic stroke in an elderly cohort without atrial fibrillation. Mayo Clin Proc 79(8):1008–1014PubMedCrossRef
65.
go back to reference Osranek M, Bursi F, Bailey KR, Grossardt BR, Brown RD, Kopecky SL et al (2005) Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone atrial fibrillation: three-decade follow-up. Eur Heart J 26(23):2556–2561PubMedCrossRef Osranek M, Bursi F, Bailey KR, Grossardt BR, Brown RD, Kopecky SL et al (2005) Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone atrial fibrillation: three-decade follow-up. Eur Heart J 26(23):2556–2561PubMedCrossRef
66.
go back to reference Bustamante-Labarta M, Perrone S, de la Fuente RL, Stutzbach P, de la Hoz RP, Torino A, Favaloro R (2002) Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr 15(10):1160–1164PubMedCrossRef Bustamante-Labarta M, Perrone S, de la Fuente RL, Stutzbach P, de la Hoz RP, Torino A, Favaloro R (2002) Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr 15(10):1160–1164PubMedCrossRef
67.
go back to reference Grapsa J, Gibbs JS, Cabrita IZ, Watson GF, Pavlopoulos H, Dawson D et al (2012) The association of clinical outcome with right atrial and ventricular remodelling in patients with pulmonary arterial hypertension: study with real-time three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:666–672PubMedCrossRef Grapsa J, Gibbs JS, Cabrita IZ, Watson GF, Pavlopoulos H, Dawson D et al (2012) The association of clinical outcome with right atrial and ventricular remodelling in patients with pulmonary arterial hypertension: study with real-time three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:666–672PubMedCrossRef
68.
go back to reference Sallach JA, Tang WW, Borowski AG, Tong W, Porter T, Martin MG et al (2009) Right atrial volume index in chronic systolic heart failure and prognosis. JACC Cardiovasc Imaging 2(5):527–534PubMedCrossRef Sallach JA, Tang WW, Borowski AG, Tong W, Porter T, Martin MG et al (2009) Right atrial volume index in chronic systolic heart failure and prognosis. JACC Cardiovasc Imaging 2(5):527–534PubMedCrossRef
69.
go back to reference Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 6:583–598CrossRef Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 6:583–598CrossRef
70.
go back to reference Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological), 39(1):1–38 Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological), 39(1):1–38
71.
go back to reference Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRef Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRef
72.
go back to reference Malladi R, Sethian J, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175CrossRef Malladi R, Sethian J, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175CrossRef
73.
go back to reference Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge
74.
go back to reference Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49CrossRef Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49CrossRef
75.
go back to reference Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1):115–126PubMedCrossRef Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1):115–126PubMedCrossRef
76.
go back to reference Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solórzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28(8):1266–1277PubMedCrossRef Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solórzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28(8):1266–1277PubMedCrossRef
77.
go back to reference Sabuncu MR, Yeo BT, Van Leemput K, Fischl B, Golland P (2010) A generative model for image segmentation based on label fusion. IEEE Trans Med Imaging 29(10):1714–1729PubMedPubMedCentralCrossRef Sabuncu MR, Yeo BT, Van Leemput K, Fischl B, Golland P (2010) A generative model for image segmentation based on label fusion. IEEE Trans Med Imaging 29(10):1714–1729PubMedPubMedCentralCrossRef
78.
go back to reference Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921PubMedPubMedCentralCrossRef Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921PubMedPubMedCentralCrossRef
79.
go back to reference Asman AJ, Landman B (2011) Robust statistical label fusion through consensus level, labeler accuracy, and truth estimation (COLLATE). IEEE Trans Med Imaging 30(10):1779–1794PubMedPubMedCentralCrossRef Asman AJ, Landman B (2011) Robust statistical label fusion through consensus level, labeler accuracy, and truth estimation (COLLATE). IEEE Trans Med Imaging 30(10):1779–1794PubMedPubMedCentralCrossRef
80.
go back to reference Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59CrossRef Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59CrossRef
81.
go back to reference Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 6:681–685CrossRef Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 6:681–685CrossRef
82.
go back to reference Van Rugge FP, Van der Wall EE, Spanjersberg SJ, De Roos A, Matheijssen NA, Zwinderman AH et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 90(1):127–138PubMedCrossRef Van Rugge FP, Van der Wall EE, Spanjersberg SJ, De Roos A, Matheijssen NA, Zwinderman AH et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 90(1):127–138PubMedCrossRef
83.
go back to reference Amini AA, Prince JL (2013) Measurement of cardiac deformations from MRI: physical and mathematical models. Springer, Berlin Amini AA, Prince JL (2013) Measurement of cardiac deformations from MRI: physical and mathematical models. Springer, Berlin
84.
go back to reference Lee HY, Codella NC, Cham MD, Weinsaft JW, Wang Y (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57(4):905–913PubMedCrossRef Lee HY, Codella NC, Cham MD, Weinsaft JW, Wang Y (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57(4):905–913PubMedCrossRef
85.
go back to reference Codella NC, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y (2008) Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 248(3):1004–1012PubMedCrossRef Codella NC, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y (2008) Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 248(3):1004–1012PubMedCrossRef
86.
go back to reference Huang S, Liu J, Lee LC, Venkatesh SK, San Teo LL, Au C, Nowinski WL (2011) An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J Digit Imaging 24(4):598–608PubMedPubMedCentralCrossRef Huang S, Liu J, Lee LC, Venkatesh SK, San Teo LL, Au C, Nowinski WL (2011) An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J Digit Imaging 24(4):598–608PubMedPubMedCentralCrossRef
87.
go back to reference Lu YL, Connelly KA, Dick AJ, Wright GA, Radau PE (2013) Automatic functional analysis of left ventricle in cardiac cine MRI. Quant Imaging Med Surg 3(4):200PubMedPubMedCentral Lu YL, Connelly KA, Dick AJ, Wright GA, Radau PE (2013) Automatic functional analysis of left ventricle in cardiac cine MRI. Quant Imaging Med Surg 3(4):200PubMedPubMedCentral
88.
go back to reference Ammar M, Mahmoudi S, Chikh MA, Abbou A (2012) Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25(2):294–306PubMedPubMedCentralCrossRef Ammar M, Mahmoudi S, Chikh MA, Abbou A (2012) Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25(2):294–306PubMedPubMedCentralCrossRef
89.
go back to reference Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL et al (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18(7):1115–1131PubMedCrossRef Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL et al (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18(7):1115–1131PubMedCrossRef
90.
go back to reference Kurkure U, Pednekar A, Muthupillai R, Flamm SD, Kakadiaris I (2009) Localization and segmentation of left ventricle in cardiac cine-MR images. IEEE Trans Biomed Eng 56(5):1360–1370PubMedCrossRef Kurkure U, Pednekar A, Muthupillai R, Flamm SD, Kakadiaris I (2009) Localization and segmentation of left ventricle in cardiac cine-MR images. IEEE Trans Biomed Eng 56(5):1360–1370PubMedCrossRef
91.
go back to reference Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2010) Segmentation of 4D cardiac MRI: automated method based on spatio-temporal watershed cuts. Image Vis Comput 28(8):1229–1243CrossRef Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2010) Segmentation of 4D cardiac MRI: automated method based on spatio-temporal watershed cuts. Image Vis Comput 28(8):1229–1243CrossRef
92.
go back to reference Jolly MP (2006) Automatic segmentation of the left ventricle in cardiac MR and CT images. Int J Comput Vis 70(2):151–163CrossRef Jolly MP (2006) Automatic segmentation of the left ventricle in cardiac MR and CT images. Int J Comput Vis 70(2):151–163CrossRef
93.
go back to reference Hu H, Liu H, Gao Z, Huang L (2013) Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming. Magn Reson Imaging 31(4):575–584PubMedCrossRef Hu H, Liu H, Gao Z, Huang L (2013) Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming. Magn Reson Imaging 31(4):575–584PubMedCrossRef
94.
go back to reference Pednekar A, Kurkure U, Muthupillai R, Flamm S, Kakadiaris I (2006) Automated left ventricular segmentation in cardiac MRI. IEEE Trans Biomed Eng 53(7):1425–1428PubMedCrossRef Pednekar A, Kurkure U, Muthupillai R, Flamm S, Kakadiaris I (2006) Automated left ventricular segmentation in cardiac MRI. IEEE Trans Biomed Eng 53(7):1425–1428PubMedCrossRef
95.
go back to reference Stalidis G, Maglaveras N, Efstratiadis SN, Dimitriadis AS, Pappas C (2002) Model-based processing scheme for quantitative 4-D cardiac MRI analysis. IEEE Trans Inf Technol Biomed 6(1):59–72PubMedCrossRef Stalidis G, Maglaveras N, Efstratiadis SN, Dimitriadis AS, Pappas C (2002) Model-based processing scheme for quantitative 4-D cardiac MRI analysis. IEEE Trans Inf Technol Biomed 6(1):59–72PubMedCrossRef
96.
go back to reference Folkesson J, Samset E, Kwong RY, Westin CF (2008) Unifying statistical classification and geodesic active regions for segmentation of cardiac MRI. IEEE Trans Inf Technol Biomed 12(3):328–334PubMedPubMedCentralCrossRef Folkesson J, Samset E, Kwong RY, Westin CF (2008) Unifying statistical classification and geodesic active regions for segmentation of cardiac MRI. IEEE Trans Inf Technol Biomed 12(3):328–334PubMedPubMedCentralCrossRef
97.
go back to reference Bai W, Shi W, Ledig C, Rueckert D (2015) Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98–109PubMedCrossRef Bai W, Shi W, Ledig C, Rueckert D (2015) Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98–109PubMedCrossRef
98.
go back to reference Paragios N (2002) A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int J Comput Vis 50(3):345–362CrossRef Paragios N (2002) A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int J Comput Vis 50(3):345–362CrossRef
99.
go back to reference Woo J, Slomka PJ, Kuo CCJ, Hong BW (2013) Multiphase segmentation using an implicit dual shape prior: application to detection of left ventricle in cardiac MRI. Comput Vis Image Underst 117(9):1084–1094CrossRef Woo J, Slomka PJ, Kuo CCJ, Hong BW (2013) Multiphase segmentation using an implicit dual shape prior: application to detection of left ventricle in cardiac MRI. Comput Vis Image Underst 117(9):1084–1094CrossRef
100.
go back to reference Santarelli MF, Positano V, Michelassi C, Lombardi M, Landini L (2003) Automated cardiac MR image segmentation: theory and measurement evaluation. Med Eng Phys 25(2):149–159PubMedCrossRef Santarelli MF, Positano V, Michelassi C, Lombardi M, Landini L (2003) Automated cardiac MR image segmentation: theory and measurement evaluation. Med Eng Phys 25(2):149–159PubMedCrossRef
101.
go back to reference Constantinides C, Chenoune Y, Kachenoura N, Roullot E, Mousseaux E, Herment A, Frouin F (2009) Semi-automated cardiac segmentation on cine magnetic resonance images using GVF-Snake deformable models. MIDAS J. http://hdl.handle.net/10380/3108 Constantinides C, Chenoune Y, Kachenoura N, Roullot E, Mousseaux E, Herment A, Frouin F (2009) Semi-automated cardiac segmentation on cine magnetic resonance images using GVF-Snake deformable models. MIDAS J. http://​hdl.​handle.​net/​10380/​3108
102.
go back to reference Ringenberg J, Deo M, Devabhaktuni V, Filgueiras-Rama D, Pizarro G, Ibanez B et al (2012) Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI. Meas Sci Technol 23(12):125405CrossRef Ringenberg J, Deo M, Devabhaktuni V, Filgueiras-Rama D, Pizarro G, Ibanez B et al (2012) Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI. Meas Sci Technol 23(12):125405CrossRef
103.
go back to reference Wu Y, Wang Y, Jia Y (2013) Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model. Comput Vis Image Underst 117(9):990–1003CrossRef Wu Y, Wang Y, Jia Y (2013) Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model. Comput Vis Image Underst 117(9):990–1003CrossRef
104.
go back to reference Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254PubMedCrossRef Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254PubMedCrossRef
105.
go back to reference Lynch M, Ghita O, Whelan PF (2006) Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Comput Med Imaging Graph 30(4):255–262PubMedCrossRef Lynch M, Ghita O, Whelan PF (2006) Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Comput Med Imaging Graph 30(4):255–262PubMedCrossRef
106.
go back to reference Gotardo PF, Boyer KL, Saltz J, Raman SV (2006) A new deformable model for boundary tracking in cardiac MRI and its application to the detection of intra-ventricular dyssynchrony. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 736–743 Gotardo PF, Boyer KL, Saltz J, Raman SV (2006) A new deformable model for boundary tracking in cardiac MRI and its application to the detection of intra-ventricular dyssynchrony. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 736–743
107.
go back to reference Schaerer J, Casta C, Pousin J, Clarysse P (2010) A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med Image Anal 14(6):738–749PubMedCrossRef Schaerer J, Casta C, Pousin J, Clarysse P (2010) A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med Image Anal 14(6):738–749PubMedCrossRef
108.
go back to reference Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D + T MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27(2):195–203PubMedCrossRef Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D + T MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27(2):195–203PubMedCrossRef
109.
go back to reference Sun W, Chan R, Willsky AS (2008) Learning the dynamics and time-recursive boundary detection of deformable objects. IEEE Trans Image Process 17(11):2186–2200PubMedCrossRef Sun W, Chan R, Willsky AS (2008) Learning the dynamics and time-recursive boundary detection of deformable objects. IEEE Trans Image Process 17(11):2186–2200PubMedCrossRef
110.
go back to reference Chen T, Babb J, Kellman P, Axel L, Kim D (2008) Semi-automated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27(8):1084–1094PubMedCrossRef Chen T, Babb J, Kellman P, Axel L, Kim D (2008) Semi-automated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27(8):1084–1094PubMedCrossRef
111.
go back to reference Huang X, Metaxas DN (2008) Metamorphs: deformable shape and appearance models. IEEE Trans Pattern Anal Mach Intell 30(8):1444–1459PubMedCrossRef Huang X, Metaxas DN (2008) Metamorphs: deformable shape and appearance models. IEEE Trans Pattern Anal Mach Intell 30(8):1444–1459PubMedCrossRef
112.
go back to reference Spottiswoode BS, Zhong X, Lorenz CH, Mayosi BM, Meintjes EM, Epstein FH (2009) Motion-guided segmentation for cine DENSE MRI. Med Image Anal 13(1):105–115PubMedPubMedCentralCrossRef Spottiswoode BS, Zhong X, Lorenz CH, Mayosi BM, Meintjes EM, Epstein FH (2009) Motion-guided segmentation for cine DENSE MRI. Med Image Anal 13(1):105–115PubMedPubMedCentralCrossRef
113.
go back to reference Auger DA, Zhong X, Epstein FH, Meintjes EM, Spottiswoode BS (2014) Semi-automated left ventricular segmentation based on a guide point model approach for 3D cine DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:8PubMedPubMedCentralCrossRef Auger DA, Zhong X, Epstein FH, Meintjes EM, Spottiswoode BS (2014) Semi-automated left ventricular segmentation based on a guide point model approach for 3D cine DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:8PubMedPubMedCentralCrossRef
114.
go back to reference Chen T, Wang X, Chung S, Metaxas D, Axel L (2010) Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models. IEEE Trans Med Imaging 29(1):1–11PubMedPubMedCentralCrossRef Chen T, Wang X, Chung S, Metaxas D, Axel L (2010) Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models. IEEE Trans Med Imaging 29(1):1–11PubMedPubMedCentralCrossRef
115.
go back to reference Kermani S, Moradi MH, Abrishami-Moghaddam H, Saneei H, Marashi MJ, Shahbazi-Gahrouei D (2009) Quantitative analysis of left ventricular performance from sequences of cardiac magnetic resonance imaging using active mesh model. Comput Med Imaging Graph 33(3):222–234PubMedCrossRef Kermani S, Moradi MH, Abrishami-Moghaddam H, Saneei H, Marashi MJ, Shahbazi-Gahrouei D (2009) Quantitative analysis of left ventricular performance from sequences of cardiac magnetic resonance imaging using active mesh model. Comput Med Imaging Graph 33(3):222–234PubMedCrossRef
116.
go back to reference Khalifa F, Beache GM, Farb GG, Giridharan G, El-Baz A (2012) Accurate automatic analysis of cardiac cine images. IEEE Trans Biomed Eng 59(2):445–455PubMedCrossRef Khalifa F, Beache GM, Farb GG, Giridharan G, El-Baz A (2012) Accurate automatic analysis of cardiac cine images. IEEE Trans Biomed Eng 59(2):445–455PubMedCrossRef
117.
go back to reference Wei D, Sun Y, Ong SH, Chai P, Teo LL, Low AF (2013) Three-dimensional segmentation of the left ventricle in late gadolinium enhanced MR images of chronic infarction combining long-and short-axis information. Med Image Anal 17(6):685–697PubMedCrossRef Wei D, Sun Y, Ong SH, Chai P, Teo LL, Low AF (2013) Three-dimensional segmentation of the left ventricle in late gadolinium enhanced MR images of chronic infarction combining long-and short-axis information. Med Image Anal 17(6):685–697PubMedCrossRef
118.
go back to reference Cordero-Grande L, Vegas-Sánchez-Ferrero G, Casaseca-de-la-Higuera P, San-Román-Calvar JA, Revilla-Orodea A, Martín-Fernández M, Alberola-López C (2011) Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model. Med Image Anal 15(3):283–301PubMedCrossRef Cordero-Grande L, Vegas-Sánchez-Ferrero G, Casaseca-de-la-Higuera P, San-Román-Calvar JA, Revilla-Orodea A, Martín-Fernández M, Alberola-López C (2011) Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model. Med Image Anal 15(3):283–301PubMedCrossRef
119.
go back to reference Mitchell SC, Bosch JG, Lelieveldt BP, Van der Geest RJ, Reiber JH, Sonka M (2002) 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178PubMedCrossRef Mitchell SC, Bosch JG, Lelieveldt BP, Van der Geest RJ, Reiber JH, Sonka M (2002) 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178PubMedCrossRef
120.
go back to reference Van Assen HC, Danilouchkine MG, Frangi AF, Ordás S, Westenberg JJ, Reiber JH, Lelieveldt BP (2006) SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med Image Anal 10(2):286–303PubMedCrossRef Van Assen HC, Danilouchkine MG, Frangi AF, Ordás S, Westenberg JJ, Reiber JH, Lelieveldt BP (2006) SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med Image Anal 10(2):286–303PubMedCrossRef
121.
go back to reference Lekadir K, Merrifield R, Yang GZ (2007) Outlier detection and handling for robust 3-D active shape models search. IEEE Trans Med Imaging 26(2):212–222PubMedCrossRef Lekadir K, Merrifield R, Yang GZ (2007) Outlier detection and handling for robust 3-D active shape models search. IEEE Trans Med Imaging 26(2):212–222PubMedCrossRef
122.
go back to reference Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357PubMedCrossRef Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357PubMedCrossRef
123.
go back to reference Van Assen HC, Danilouchkine MG, Dirksen MS, Reiber JH, Lelieveldt BP (2008) A 3-D active shape model driven by fuzzy inference: application to cardiac CT and MR. IEEE Trans Inf Technol Biomed 12(5):595–605PubMedCrossRef Van Assen HC, Danilouchkine MG, Dirksen MS, Reiber JH, Lelieveldt BP (2008) A 3-D active shape model driven by fuzzy inference: application to cardiac CT and MR. IEEE Trans Inf Technol Biomed 12(5):595–605PubMedCrossRef
124.
go back to reference Suinesiaputra A, Frangi AF, Kaandorp TA, Lamb HJ, Bax JJ, Reiber JH, Lelieveldt BP (2009) Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans Med Imaging 28(4):595–607PubMedCrossRef Suinesiaputra A, Frangi AF, Kaandorp TA, Lamb HJ, Bax JJ, Reiber JH, Lelieveldt BP (2009) Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans Med Imaging 28(4):595–607PubMedCrossRef
125.
go back to reference Frangi AF, Reiber JH, Lelieveldt BP (2003) Independent component analysis in statistical shape models. In: Medical imaging. International Society for Optics and Photonics, pp 375–383 Frangi AF, Reiber JH, Lelieveldt BP (2003) Independent component analysis in statistical shape models. In: Medical imaging. International Society for Optics and Photonics, pp 375–383
126.
go back to reference Lekadir K, Keenan NG, Pennell DJ, Yang GZ (2011) An inter-landmark approach to 4-D shape extraction and interpretation: application to myocardial motion assessment in MRI. IEEE Trans Med Imaging 30(1):52–68PubMedCrossRef Lekadir K, Keenan NG, Pennell DJ, Yang GZ (2011) An inter-landmark approach to 4-D shape extraction and interpretation: application to myocardial motion assessment in MRI. IEEE Trans Med Imaging 30(1):52–68PubMedCrossRef
127.
go back to reference Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D time left ventricular segmentation technique. IEEE Trans Med Imaging 30(2):461–474CrossRef Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D time left ventricular segmentation technique. IEEE Trans Med Imaging 30(2):461–474CrossRef
128.
go back to reference Roohi SF, Zoroofi RA (2013) 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J Comput Assist Radiol Surg 8(3):335–351CrossRef Roohi SF, Zoroofi RA (2013) 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J Comput Assist Radiol Surg 8(3):335–351CrossRef
129.
go back to reference Qin X, Tian Y, Yan P (2015) Feature competition and partial sparse shape modeling for cardiac image sequences segmentation. Neurocomputing 149:904–913CrossRef Qin X, Tian Y, Yan P (2015) Feature competition and partial sparse shape modeling for cardiac image sequences segmentation. Neurocomputing 149:904–913CrossRef
130.
go back to reference Zhu Y, Papademetris X, Sinusas AJ, Duncan JS (2010) Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans Med Imaging 29(3):669–687PubMedPubMedCentralCrossRef Zhu Y, Papademetris X, Sinusas AJ, Duncan JS (2010) Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans Med Imaging 29(3):669–687PubMedPubMedCentralCrossRef
131.
go back to reference Alba X, i Ventura F, Rosa M, Lekadir K, Tobon-Gomez C, Hoogendoorn C, Frangi AF (2014) Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints. Magn Reson Med 72(6):1775–1784PubMedCrossRef Alba X, i Ventura F, Rosa M, Lekadir K, Tobon-Gomez C, Hoogendoorn C, Frangi AF (2014) Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints. Magn Reson Med 72(6):1775–1784PubMedCrossRef
132.
go back to reference Yeh JY, Fu JC, Wu CC, Lin HM, Chai JW (2005) Myocardial border detection by branch-and-bound dynamic programming in magnetic resonance images. Comput Methods Programs Biomed 79(1):19–29PubMedCrossRef Yeh JY, Fu JC, Wu CC, Lin HM, Chai JW (2005) Myocardial border detection by branch-and-bound dynamic programming in magnetic resonance images. Comput Methods Programs Biomed 79(1):19–29PubMedCrossRef
133.
go back to reference Ayed IB, Chen HM, Punithakumar K, Ross I, Li S (2012) Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure. Med Image Anal 16(1):87–100PubMedCrossRef Ayed IB, Chen HM, Punithakumar K, Ross I, Li S (2012) Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure. Med Image Anal 16(1):87–100PubMedCrossRef
134.
go back to reference Nambakhsh CM, Yuan J, Punithakumar K, Goela A, Rajchl M, Peters TM, Ayed IB (2013) Left ventricle segmentation in MRI via convex relaxed distribution matching. Med Image Anal 17(8):1010–1024PubMedCrossRef Nambakhsh CM, Yuan J, Punithakumar K, Goela A, Rajchl M, Peters TM, Ayed IB (2013) Left ventricle segmentation in MRI via convex relaxed distribution matching. Med Image Anal 17(8):1010–1024PubMedCrossRef
135.
go back to reference Eslami A, Karamalis A, Katouzian A, Navab N (2013) Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med Image Anal 17(2):236–253PubMedCrossRef Eslami A, Karamalis A, Katouzian A, Navab N (2013) Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med Image Anal 17(2):236–253PubMedCrossRef
136.
go back to reference Maier OM, Jiménez D, Santos A, Ledesma-Carbayo MJ (2012) Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts. In: Computing in cardiology. IEEE, pp 697–700 Maier OM, Jiménez D, Santos A, Ledesma-Carbayo MJ (2012) Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts. In: Computing in cardiology. IEEE, pp 697–700
137.
go back to reference Wang CW, Peng CW, Chen HC (2012) A simple and fully automatic right ventricle segmentation method for 4-dimensional cardiac MR images. In: Proceedings of MICCAI RV segmentation challenge Wang CW, Peng CW, Chen HC (2012) A simple and fully automatic right ventricle segmentation method for 4-dimensional cardiac MR images. In: Proceedings of MICCAI RV segmentation challenge
138.
go back to reference Ringenberg J, Deo M, Devabhaktuni V, Berenfeld O, Boyers P, Gold J (2014) Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI. Comput Med Imaging Graph 38(3):190–201PubMedCrossRef Ringenberg J, Deo M, Devabhaktuni V, Berenfeld O, Boyers P, Gold J (2014) Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI. Comput Med Imaging Graph 38(3):190–201PubMedCrossRef
139.
go back to reference Punithakumar K, Noga M, Ayed IB, Boulanger P (2015) Right ventricular segmentation in cardiac MRI with moving mesh correspondences. Comput Med Imaging Graph 43:15–25PubMedCrossRef Punithakumar K, Noga M, Ayed IB, Boulanger P (2015) Right ventricular segmentation in cardiac MRI with moving mesh correspondences. Comput Med Imaging Graph 43:15–25PubMedCrossRef
140.
go back to reference Mahapatra D (2014) Analyzing training information from random forests for improved image segmentation. IEEE Trans Image Process 23(4):1504–1512PubMedCrossRef Mahapatra D (2014) Analyzing training information from random forests for improved image segmentation. IEEE Trans Image Process 23(4):1504–1512PubMedCrossRef
141.
go back to reference Nambakhsh CM, Rajchl M, Yuan J, Peters TM, Ayed IB (2012) Rapid automated 3D RV endocardium segmentation in MRI via convex relaxation and distribution matching. In: Proceedings of MICCAI RV segmentation challenge Nambakhsh CM, Rajchl M, Yuan J, Peters TM, Ayed IB (2012) Rapid automated 3D RV endocardium segmentation in MRI via convex relaxation and distribution matching. In: Proceedings of MICCAI RV segmentation challenge
142.
go back to reference Ou Y, Doshi J, Erus G, Davatzikos C (2012) Multi-atlas segmentation of the right ventricle in cardiac MRI. In: Proceedings of MICCAI RV segmentation challenge Ou Y, Doshi J, Erus G, Davatzikos C (2012) Multi-atlas segmentation of the right ventricle in cardiac MRI. In: Proceedings of MICCAI RV segmentation challenge
143.
go back to reference Zuluaga MA, Cardoso MJ, Ourselin S (2012) Automatic right ventricle segmentation using multi-label fusion in cardiac MRI. In: Proceedings of MICCAI RV segmentation challenge Zuluaga MA, Cardoso MJ, Ourselin S (2012) Automatic right ventricle segmentation using multi-label fusion in cardiac MRI. In: Proceedings of MICCAI RV segmentation challenge
144.
go back to reference Bai W, Shi W, Wang H, Peters NS, Rueckert D (2012) Multi-atlas based segmentation with local label fusion for right ventricle MR images. In: Proceedings of MICCAI RV segmentation challenge Bai W, Shi W, Wang H, Peters NS, Rueckert D (2012) Multi-atlas based segmentation with local label fusion for right ventricle MR images. In: Proceedings of MICCAI RV segmentation challenge
145.
go back to reference Grosgeorge D, Petitjean C, Dacher JN, Ruan S (2013) Graph cut segmentation with a statistical shape model in cardiac MRI. Comput Vis Image Underst 117(9):1027–1035CrossRef Grosgeorge D, Petitjean C, Dacher JN, Ruan S (2013) Graph cut segmentation with a statistical shape model in cardiac MRI. Comput Vis Image Underst 117(9):1027–1035CrossRef
146.
go back to reference Oghli MG, Dehlaghi V, Zadeh AM, Fallahi A, Pooyan M (2014) Right ventricle functional parameters estimation in arrhythmogenic right ventricular dysplasia using a robust shape based deformable model. J Med Signals Sens 4(3):211PubMedPubMedCentral Oghli MG, Dehlaghi V, Zadeh AM, Fallahi A, Pooyan M (2014) Right ventricle functional parameters estimation in arrhythmogenic right ventricular dysplasia using a robust shape based deformable model. J Med Signals Sens 4(3):211PubMedPubMedCentral
147.
go back to reference Sermesant M, Forest C, Pennec X, Delingette H, Ayache N (2003) Deformable biomechanical models: application to 4D cardiac image analysis. Med Image Anal 7(4):475–488PubMedCrossRef Sermesant M, Forest C, Pennec X, Delingette H, Ayache N (2003) Deformable biomechanical models: application to 4D cardiac image analysis. Med Image Anal 7(4):475–488PubMedCrossRef
148.
go back to reference Rougon N, Petitjean C, Prêteux F, Cluzel P, Grenier P (2005) A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures. Med Image Anal 9(4):353–375PubMedCrossRef Rougon N, Petitjean C, Prêteux F, Cluzel P, Grenier P (2005) A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures. Med Image Anal 9(4):353–375PubMedCrossRef
149.
go back to reference Hautvast G, Lobregt S, Breeuwer M, Gerritsen F (2006) Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans Med Imaging 25(11):1472–1482PubMedCrossRef Hautvast G, Lobregt S, Breeuwer M, Gerritsen F (2006) Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans Med Imaging 25(11):1472–1482PubMedCrossRef
150.
go back to reference Cocosco CA, Niessen WJ, Netsch T, Vonken EJ, Lund G, Stork A, Viergever MA (2008) Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J Magn Reson Imaging 28(2):366–374PubMedCrossRef Cocosco CA, Niessen WJ, Netsch T, Vonken EJ, Lund G, Stork A, Viergever MA (2008) Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J Magn Reson Imaging 28(2):366–374PubMedCrossRef
151.
go back to reference Grosgeorge D, Petitjean C, Caudron J, Fares J, Dacher JN (2011) Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg 6(5):573–581PubMedCrossRef Grosgeorge D, Petitjean C, Caudron J, Fares J, Dacher JN (2011) Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg 6(5):573–581PubMedCrossRef
152.
154.
go back to reference Wang L, Lekadir K, Lee SR, Merrifield R, Yang GZ (2013) A general framework for context-specific image segmentation using reinforcement learning. IEEE Trans Med Imaging 32(5):943–956PubMedCrossRef Wang L, Lekadir K, Lee SR, Merrifield R, Yang GZ (2013) A general framework for context-specific image segmentation using reinforcement learning. IEEE Trans Med Imaging 32(5):943–956PubMedCrossRef
155.
go back to reference Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265PubMedCrossRef Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265PubMedCrossRef
156.
go back to reference Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S et al (2013) A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans Med Imaging 32(7):1302–1315PubMedCrossRef Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S et al (2013) A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans Med Imaging 32(7):1302–1315PubMedCrossRef
157.
go back to reference Ordas S, Boisrobert L, Huguet M, Frangi AF (2003) Active shape models with invariant optimal features (IOF-ASM) application to cardiac MRI segmentation. In: Computers in cardiology. IEEE, pp 633–636 Ordas S, Boisrobert L, Huguet M, Frangi AF (2003) Active shape models with invariant optimal features (IOF-ASM) application to cardiac MRI segmentation. In: Computers in cardiology. IEEE, pp 633–636
158.
go back to reference Mitchell SC, Lelieveldt BP, Van der Geest RJ, Bosch HG, Reiver JHC, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20(5):415–423PubMedCrossRef Mitchell SC, Lelieveldt BP, Van der Geest RJ, Bosch HG, Reiver JHC, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20(5):415–423PubMedCrossRef
159.
go back to reference Zhang H, Wahle A, Johnson RK, Scholz TD, Sonka M (2010) 4-D cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans Med Imaging 29(2):350–364PubMedPubMedCentralCrossRef Zhang H, Wahle A, Johnson RK, Scholz TD, Sonka M (2010) 4-D cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans Med Imaging 29(2):350–364PubMedPubMedCentralCrossRef
160.
go back to reference Alba X, Pereanez M, Hoogendoorn C, Swift A, Wild J, Frangi AF, Lekadir K (2015) An algorithm for the segmentation of highly abnormal hearts using a generic statistical shape model. IEEE Trans Med Imaging. [Epub ahead of print] Alba X, Pereanez M, Hoogendoorn C, Swift A, Wild J, Frangi AF, Lekadir K (2015) An algorithm for the segmentation of highly abnormal hearts using a generic statistical shape model. IEEE Trans Med Imaging. [Epub ahead of print]
161.
go back to reference John M, Rahn N (2005) Automatic left atrium segmentation by cutting the blood pool at narrowings. In: Medical image computing and computer-assisted intervention—MICCAI. Springer, Berlin John M, Rahn N (2005) Automatic left atrium segmentation by cutting the blood pool at narrowings. In: Medical image computing and computer-assisted intervention—MICCAI. Springer, Berlin
162.
go back to reference Zhu L, Gao Y, Yezzi A, Tannenbaum A (2013) Automatic segmentation of the left atrium from MR images via variational region growing with a moments-based shape prior. IEEE Trans Image Process 22(12):5111–5122PubMedPubMedCentralCrossRef Zhu L, Gao Y, Yezzi A, Tannenbaum A (2013) Automatic segmentation of the left atrium from MR images via variational region growing with a moments-based shape prior. IEEE Trans Image Process 22(12):5111–5122PubMedPubMedCentralCrossRef
163.
go back to reference Karim R, Juli C, Malcolme-Lawes L, Wyn-Davies D, Kanagaratnam P, Peters N, Rueckert D (2010) Automatic segmentation of left atrial geometry from contrast-enhanced magnetic resonance images using a probabilistic atlas. In: Statistical atlases and computational models of the heart. Springer, Berlin, pp 134–143 Karim R, Juli C, Malcolme-Lawes L, Wyn-Davies D, Kanagaratnam P, Peters N, Rueckert D (2010) Automatic segmentation of left atrial geometry from contrast-enhanced magnetic resonance images using a probabilistic atlas. In: Statistical atlases and computational models of the heart. Springer, Berlin, pp 134–143
164.
go back to reference Kutra D, Saalbach A, Lehmann H, Groth A, Dries S, Krueger M, et al (2012) Automatic multi-model-based segmentation of the left atrium in cardiac MRI scans. In: Medical image computing and computer-assisted intervention—MICCAI. Springer, Berlin Kutra D, Saalbach A, Lehmann H, Groth A, Dries S, Krueger M, et al (2012) Automatic multi-model-based segmentation of the left atrium in cardiac MRI scans. In: Medical image computing and computer-assisted intervention—MICCAI. Springer, Berlin
165.
go back to reference Makowski P, Sørensen TS, Therkildsen SV, Materka A, Stødkilde-Jørgensen H, Pedersen EM (2002) Two-phase active contour method for semiautomatic segmentation of the heart and blood vessels from MRI images for 3D visualization. Comput Med Imaging Graph 26(1):9–17PubMedCrossRef Makowski P, Sørensen TS, Therkildsen SV, Materka A, Stødkilde-Jørgensen H, Pedersen EM (2002) Two-phase active contour method for semiautomatic segmentation of the heart and blood vessels from MRI images for 3D visualization. Comput Med Imaging Graph 26(1):9–17PubMedCrossRef
166.
go back to reference Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images. Med Image Anal 8(3):371–386PubMedCrossRef Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images. Med Image Anal 8(3):371–386PubMedCrossRef
167.
go back to reference Koikkalainen J, Tölli T, Lauerma K, Antila K, Mattila E, Lilja M, Lötjönen J (2008) Methods of artificial enlargement of the training set for statistical shape models. IEEE Trans Med Imaging 27(11):1643–1654PubMedCrossRef Koikkalainen J, Tölli T, Lauerma K, Antila K, Mattila E, Lilja M, Lötjönen J (2008) Methods of artificial enlargement of the training set for statistical shape models. IEEE Trans Med Imaging 27(11):1643–1654PubMedCrossRef
168.
go back to reference Wierzbicki M, Moore J, Drangova M, Peters T (2008) Subject-specific models for image-guided cardiac surgery. Phys Med Biol 53(19):5295PubMedCrossRef Wierzbicki M, Moore J, Drangova M, Peters T (2008) Subject-specific models for image-guided cardiac surgery. Phys Med Biol 53(19):5295PubMedCrossRef
169.
go back to reference Peters J, Ecabert O, Meyer C, Kneser R, Weese J (2010) Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation. Med Image Anal 14(1):70–84PubMedCrossRef Peters J, Ecabert O, Meyer C, Kneser R, Weese J (2010) Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation. Med Image Anal 14(1):70–84PubMedCrossRef
170.
go back to reference Zhuang X, Rhode KS, Razavi RS, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Med Imaging 29(9):1612–1625PubMedCrossRef Zhuang X, Rhode KS, Razavi RS, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Med Imaging 29(9):1612–1625PubMedCrossRef
171.
go back to reference Zuluaga MA, Cardoso MJ, Modat M, Ourselin S (2013) Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In: Functional imaging and modeling of the heart. Springer, Berlin, pp 174–181 Zuluaga MA, Cardoso MJ, Modat M, Ourselin S (2013) Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In: Functional imaging and modeling of the heart. Springer, Berlin, pp 174–181
Metadata
Title
A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging
Authors
Peng Peng
Karim Lekadir
Ali Gooya
Ling Shao
Steffen E. Petersen
Alejandro F. Frangi
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-015-0521-4

Other articles of this Issue 2/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016 Go to the issue