Skip to main content
Top
Published in: Journal of Digital Imaging 4/2020

01-08-2020 | Melanoma | Original Paper

Skin Lesion Segmentation with Improved Convolutional Neural Network

Authors: Şaban Öztürk, Umut Özkaya

Published in: Journal of Imaging Informatics in Medicine | Issue 4/2020

Login to get access

Abstract

Recently, the incidence of skin cancer has increased considerably and is seriously threatening human health. Automatic detection of this disease, where early detection is critical to human life, is quite challenging. Factors such as undesirable residues (hair, ruler markers), indistinct boundaries, variable contrast, shape differences, and color differences in the skin lesion images make automatic analysis quite difficult. To overcome these challenges, a highly effective segmentation method based on a fully convolutional network (FCN) is presented in this paper. The proposed improved FCN (iFCN) architecture is used for the segmentation of full-resolution skin lesion images without any pre- or post-processing. It is to support the residual structure of the FCN architecture with spatial information. This situation, which creates a more advanced residual system, enables more precise detection of details on the edges of the lesion, and an analysis independent of skin color can be performed. It offers two contributions: determining the center of the lesion and clarifying the edge details despite the undesirable effects. Two publicly available datasets, the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 Challenge and PH2 datasets, are used to evaluate the performance of the iFCN method. The mean Jaccard index is 78.34%, the mean Dice score is 88.64%, and the mean accuracy value is 95.30% for the proposed method for the ISBI 2017 test dataset. Furthermore, the mean Jaccard index is 87.1%, the mean Dice score is 93.02%, and the mean accuracy value is 96.92% for the proposed method for the PH2 test dataset.
Literature
1.
go back to reference Al-Masni MA, Al-Antari MA, Choi MT, Han SM, Kim TS: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Programs Biomed 162:221-231,2018PubMedCrossRef Al-Masni MA, Al-Antari MA, Choi MT, Han SM, Kim TS: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Programs Biomed 162:221-231,2018PubMedCrossRef
4.
go back to reference Tsao H, Olazagasti JM, Cordoro KM, Brewer JD, Taylor SC, Bordeaux JS, Chren MM, Sober AJ, Tegeler C, Bhushan R, Begolka WS: Early detection of melanoma: reviewing the ABCDEs. J Am Acad Dermatol 72(4):717-23,2015PubMedCrossRef Tsao H, Olazagasti JM, Cordoro KM, Brewer JD, Taylor SC, Bordeaux JS, Chren MM, Sober AJ, Tegeler C, Bhushan R, Begolka WS: Early detection of melanoma: reviewing the ABCDEs. J Am Acad Dermatol 72(4):717-23,2015PubMedCrossRef
5.
go back to reference Li Y, Shen L: Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18:2,2018 Li Y, Shen L: Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18:2,2018
6.
go back to reference Oliveira RB, Papa JP, Pereira AS, Tavares JMRS: Computational methods for pigmented skin lesion classification in images: review and future trends Neural Comput Appl 29(3):613–636,2016CrossRef Oliveira RB, Papa JP, Pereira AS, Tavares JMRS: Computational methods for pigmented skin lesion classification in images: review and future trends Neural Comput Appl 29(3):613–636,2016CrossRef
7.
go back to reference Pellacani G, Seidenari S: Comparison between morphological parameters in pigmented skin lesion images acquired by means of epiluminescence surface microscopy and polarized-light videomicroscopy Clin Dermatol 20(3):222–227,2002PubMedCrossRef Pellacani G, Seidenari S: Comparison between morphological parameters in pigmented skin lesion images acquired by means of epiluminescence surface microscopy and polarized-light videomicroscopy Clin Dermatol 20(3):222–227,2002PubMedCrossRef
8.
go back to reference Unver HM, Ayan E: Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm Diagnostics (Basel) 9(3),2019 Unver HM, Ayan E: Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm Diagnostics (Basel) 9(3),2019
9.
go back to reference Pathan S, Prabhu KG, Siddalingaswamy PC: Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review. Biomed Sign Process Control 39:237–262,2018CrossRef Pathan S, Prabhu KG, Siddalingaswamy PC: Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review. Biomed Sign Process Control 39:237–262,2018CrossRef
10.
go back to reference Møllersen K, Kirchesch HM, Schopf TG, Godtliebsen F: Unsupervised segmentation for digital dermoscopic images: Skin Res Technol 16(4):401–407,2010PubMedCrossRef Møllersen K, Kirchesch HM, Schopf TG, Godtliebsen F: Unsupervised segmentation for digital dermoscopic images: Skin Res Technol 16(4):401–407,2010PubMedCrossRef
11.
go back to reference Gomez DD, Butakoff C, Ersboll BK, Stoecker W: Independent histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng, 55, 1, pp. 157-61, 2008.PubMedPubMedCentralCrossRef Gomez DD, Butakoff C, Ersboll BK, Stoecker W: Independent histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng, 55, 1, pp. 157-61, 2008.PubMedPubMedCentralCrossRef
12.
go back to reference Yuksel ME, Borlu M: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst 17(4):976–982,2009CrossRef Yuksel ME, Borlu M: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst 17(4):976–982,2009CrossRef
13.
go back to reference Emre Celebi M, Wen Q, Hwang S, Iyatomi H, Schaefer G: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res Technol 19(1)e252–e258,2013PubMedCrossRef Emre Celebi M, Wen Q, Hwang S, Iyatomi H, Schaefer G: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res Technol 19(1)e252–e258,2013PubMedCrossRef
14.
go back to reference Peruch F, Bogo F, Bonazza M, Cappelleri V-M, Peserico E: Simpler, faster, more accurate melanocytic lesion segmentation through MEDS. IEEE Trans Biomed Eng 61(2):557-565,2014PubMedCrossRef Peruch F, Bogo F, Bonazza M, Cappelleri V-M, Peserico E: Simpler, faster, more accurate melanocytic lesion segmentation through MEDS. IEEE Trans Biomed Eng 61(2):557-565,2014PubMedCrossRef
15.
go back to reference Zhou H, Schaefer G, Sadka AH, Celebi ME: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Select Top Sign Process 3(1):26–34,2009CrossRef Zhou H, Schaefer G, Sadka AH, Celebi ME: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Select Top Sign Process 3(1):26–34,2009CrossRef
16.
go back to reference Suer S, Kockara S, Mete M: An improved border detection in dermoscopy images for density based clustering. BMC Bioinformatics 12:10,2011 Suer S, Kockara S, Mete M: An improved border detection in dermoscopy images for density based clustering. BMC Bioinformatics 12:10,2011
17.
go back to reference Schmid P: Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Trans Med Imaging 18(2):164–171,1999PubMedCrossRef Schmid P: Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Trans Med Imaging 18(2):164–171,1999PubMedCrossRef
19.
go back to reference Xie F, Bovik AC: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm: Pattern Recognit 46(3):1012–1019,2013CrossRef Xie F, Bovik AC: Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm: Pattern Recognit 46(3):1012–1019,2013CrossRef
20.
go back to reference Abbas Q, Celebi ME, Fondón García I, Rashid M: Lesion border detection in dermoscopy images using dynamic programming. Skin Res Technol 17(1):91–100,2011PubMedCrossRef Abbas Q, Celebi ME, Fondón García I, Rashid M: Lesion border detection in dermoscopy images using dynamic programming. Skin Res Technol 17(1):91–100,2011PubMedCrossRef
21.
go back to reference Abbas Q, Celebi ME, García IF: Skin tumor area extraction using an improved dynamic programming approach,” Skin Res Technol 18(2):133–142,2012PubMedCrossRef Abbas Q, Celebi ME, García IF: Skin tumor area extraction using an improved dynamic programming approach,” Skin Res Technol 18(2):133–142,2012PubMedCrossRef
22.
go back to reference Iyatomi H, Oka H, Celebi ME, Hashimoto M, Hagiwara M, Tanaka M, Ogawa K: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput Med Imaging Graph 32(7):566–579,2008PubMedCrossRef Iyatomi H, Oka H, Celebi ME, Hashimoto M, Hagiwara M, Tanaka M, Ogawa K: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput Med Imaging Graph 32(7):566–579,2008PubMedCrossRef
23.
go back to reference Emre Celebi M, Kingravi HA, Iyatomi H, Alp Aslandogan Y, Stoecker WV, Moss RH, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW: Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14(3):347–353,2008PubMedPubMedCentralCrossRef Emre Celebi M, Kingravi HA, Iyatomi H, Alp Aslandogan Y, Stoecker WV, Moss RH, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW: Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14(3):347–353,2008PubMedPubMedCentralCrossRef
24.
go back to reference Glaister J, Wong A, Clausi DA: Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE Trans Biomed Eng 61(4):1220–1230,2014PubMedCrossRef Glaister J, Wong A, Clausi DA: Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE Trans Biomed Eng 61(4):1220–1230,2014PubMedCrossRef
25.
go back to reference Erkol B, Moss RH, Joe Stanley R, Stoecker WV, Hvatum E: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res Technol 11(1):17–26,2005PubMedPubMedCentralCrossRef Erkol B, Moss RH, Joe Stanley R, Stoecker WV, Hvatum E: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res Technol 11(1):17–26,2005PubMedPubMedCentralCrossRef
26.
go back to reference Mete M, Sirakov NM: Lesion detection in demoscopy images with novel density-based and active contour approaches,” BMC Bioinf 11:S6,2010 Mete M, Sirakov NM: Lesion detection in demoscopy images with novel density-based and active contour approaches,” BMC Bioinf 11:S6,2010
27.
go back to reference Ma Z, Tavares JMRS: A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J Biomed Health Inform 20(2):615–623,2016PubMedCrossRef Ma Z, Tavares JMRS: A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J Biomed Health Inform 20(2):615–623,2016PubMedCrossRef
28.
go back to reference Wang H, Moss RH, Chen X, Stanley RJ, Stoecker WV, Celebi ME, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW, Szalapski TM: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images. Comput Med Imaging Graph 35(2):116–120,2011PubMedCrossRef Wang H, Moss RH, Chen X, Stanley RJ, Stoecker WV, Celebi ME, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW, Szalapski TM: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images. Comput Med Imaging Graph 35(2):116–120,2011PubMedCrossRef
29.
go back to reference Wighton P, Lee TK, Mori G, Lui H, McLean DI, Atkins MS: Conditional random fields and supervised learning in automated skin lesion diagnosis. Int J Biomed Imaging 2011:1–10,2011CrossRef Wighton P, Lee TK, Mori G, Lui H, McLean DI, Atkins MS: Conditional random fields and supervised learning in automated skin lesion diagnosis. Int J Biomed Imaging 2011:1–10,2011CrossRef
30.
go back to reference Sadri AR, Zekri M, Sadri S, Gheissari N, Mokhtari M, Kolahdouzan F: Segmentation of dermoscopy images using wavelet networks IEEE Trans Biomed Eng 60(4):1134–1141,2013PubMedCrossRef Sadri AR, Zekri M, Sadri S, Gheissari N, Mokhtari M, Kolahdouzan F: Segmentation of dermoscopy images using wavelet networks IEEE Trans Biomed Eng 60(4):1134–1141,2013PubMedCrossRef
32.
go back to reference Huang L, Zhao Y-g, Yang T-j: Skin lesion segmentation using object scale-oriented fully convolutional neural networks. SIViP 13(3):431–438,2019.CrossRef Huang L, Zhao Y-g, Yang T-j: Skin lesion segmentation using object scale-oriented fully convolutional neural networks. SIViP 13(3):431–438,2019.CrossRef
33.
go back to reference Bi L, Feng D, Fulham M, Kim J: Improving skin lesion segmentation via stacked adversarial learning. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp 1100–1103 Bi L, Feng D, Fulham M, Kim J: Improving skin lesion segmentation via stacked adversarial learning. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp 1100–1103
34.
go back to reference Jiang F, Zhou F, Qin J, Wang T, Lei B: Decision-augmented generative adversarial network for skin lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp 447–450 Jiang F, Zhou F, Qin J, Wang T, Lei B: Decision-augmented generative adversarial network for skin lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp 447–450
35.
go back to reference Liu X, Hu G, Ma X, Kuang H: An enhanced neural network based on deep metric learning for skin lesion segmentation. In: 2019 Chinese Control And Decision Conference (CCDC), 2019, pp. 1633–1638. Liu X, Hu G, Ma X, Kuang H: An enhanced neural network based on deep metric learning for skin lesion segmentation. In: 2019 Chinese Control And Decision Conference (CCDC), 2019, pp. 1633–1638.
36.
go back to reference Khan MA, Javed MY, Sharif M, Saba T, Rehman A: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 International Conference on Computer and Information Sciences (ICCIS), 2019, pp 1–7 Khan MA, Javed MY, Sharif M, Saba T, Rehman A: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 International Conference on Computer and Information Sciences (ICCIS), 2019, pp 1–7
37.
go back to reference Codella NCF, Gutman D, Emre Celebi M, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A: Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). arXiv e-prints, https://ui.adsabs.harvard.edu/abs/2017arXiv171005006C, [October 01, 2017]. 2017 Codella NCF, Gutman D, Emre Celebi M, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A: Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). arXiv e-prints, https://​ui.​adsabs.​harvard.​edu/​abs/​2017arXiv1710050​06C, [October 01, 2017]. 2017
38.
go back to reference Mendonca T, Ferreira PM, Marques JS, Marcal ARS, Rozeira J: “PH<sup>2</sup> - A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013, pp 5437–5440 Mendonca T, Ferreira PM, Marques JS, Marcal ARS, Rozeira J: “PH<sup>2</sup> - A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013, pp 5437–5440
39.
go back to reference Shelhamer E, Long J, Darrell T: Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans Pattern Anal Mach Intell 39(4):640–651,2017.PubMedCrossRef Shelhamer E, Long J, Darrell T: Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans Pattern Anal Mach Intell 39(4):640–651,2017.PubMedCrossRef
41.
go back to reference Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Machine Intell 40(4)834–848,2018CrossRef Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Machine Intell 40(4)834–848,2018CrossRef
42.
go back to reference Stefan Jianu SR, Ichim L, Popescu D: Automatic Diagnosis of Skin Cancer Using Neural Networks. In: 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2019, pp 1–4 Stefan Jianu SR, Ichim L, Popescu D: Automatic Diagnosis of Skin Cancer Using Neural Networks. In: 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2019, pp 1–4
43.
go back to reference Garcia-Arroyo JL, Garcia-Zapirain B: Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Computer Garcia-Arroyo JL, Garcia-Zapirain B: Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Computer
Metadata
Title
Skin Lesion Segmentation with Improved Convolutional Neural Network
Authors
Şaban Öztürk
Umut Özkaya
Publication date
01-08-2020
Publisher
Springer International Publishing
Keywords
Melanoma
Melanoma
Published in
Journal of Imaging Informatics in Medicine / Issue 4/2020
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-020-00343-z

Other articles of this Issue 4/2020

Journal of Digital Imaging 4/2020 Go to the issue