Skip to main content
Top
Published in: Journal of Digital Imaging 5/2019

01-10-2019

Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans

Authors: Minho Lee, June-Goo Lee, Namkug Kim, Joon Beom Seo, Sang Min Lee

Published in: Journal of Imaging Informatics in Medicine | Issue 5/2019

Login to get access

Abstract

Airway diseases are frequently related to morphological changes that may influence lung physiology. Accurate airway region segmentation may be useful for quantitative evaluation of disease prognosis and therapy efficacy. The information can also be applied to understand the fundamental mechanisms of various lung diseases. We present a hybrid method to automatically segment the airway regions on 3D volume chest computed tomography (CT) scans. This method uses multi-scale filtering and support vector machine (SVM) classification. The proposed scheme is comprised of two hybrid steps. First, a tubular structure-based multi-scale filter is applied to find the initial candidate airway regions. Second, for identifying candidate airway regions using the fuzzy connectedness technique, the small and disconnected branches of airway regions are detected using SVM classification trained to differentiate between airway and non-airway regions through texture analysis of user-defined landmark points. For development and evaluation of the method, two datasets were incorporated: (1) 55 lung-CT volumes from the Korean Obstructive Lung Disease (KOLD) Cohort Study and (2) 20 cases from the publicly open database (EXACT′09). The average tree-length detection rates of EXACT′09 and KOLD were 56.9 ± 11.0 and 70.5 ± 8.98, respectively. Comparison of the results for the EXACT′09 data set between the presented method and other methods revealed that our approach was a high performer. The method limitations were higher false-positive rates than those of the other methods and risk of leakage. In future studies, application of a convolutional neural network will help overcome these shortcomings.
Literature
2.
go back to reference Kiraly AP, Higgins WE, McLennan G, Hoffman EA, Reinhardt JM: Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy. Acad Radiol 9:1153–1168, 2002CrossRefPubMed Kiraly AP, Higgins WE, McLennan G, Hoffman EA, Reinhardt JM: Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy. Acad Radiol 9:1153–1168, 2002CrossRefPubMed
3.
go back to reference Li B, Christensen GE, Hoffman EA, McLennan G, Reinhardt JM: Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration. Med Phys 35:5575–5583, 2008CrossRefPubMedPubMedCentral Li B, Christensen GE, Hoffman EA, McLennan G, Reinhardt JM: Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration. Med Phys 35:5575–5583, 2008CrossRefPubMedPubMedCentral
4.
go back to reference Chen B, Kitasaka T, Honma H, Takabatake H, Mori M, Natori H, Mori K: Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images. Int J Comput Assist Radiol Surg 7:465–482, 2012CrossRefPubMed Chen B, Kitasaka T, Honma H, Takabatake H, Mori M, Natori H, Mori K: Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images. Int J Comput Assist Radiol Surg 7:465–482, 2012CrossRefPubMed
5.
go back to reference Hu S, Hoffman EA, Reinhardt JM: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20:490–498, 2001CrossRefPubMed Hu S, Hoffman EA, Reinhardt JM: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20:490–498, 2001CrossRefPubMed
6.
go back to reference Kuhnigk J-M, Hahn H, Hindennach M, Dicken V, Krass S, Peitgen H-O: Lung lobe segmentation by anatomy-guided 3 D watershed transform. Proc. Proceedings of SPIE: City Kuhnigk J-M, Hahn H, Hindennach M, Dicken V, Krass S, Peitgen H-O: Lung lobe segmentation by anatomy-guided 3 D watershed transform. Proc. Proceedings of SPIE: City
7.
go back to reference Lee YK et al.: Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157–165, 2008CrossRefPubMed Lee YK et al.: Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157–165, 2008CrossRefPubMed
8.
go back to reference Mori K, et al.: Lung lobe and segmental lobe extraction from 3D chest CT datasets based on figure decomposition and Voronoi division. Proc. Medical Imaging: City Mori K, et al.: Lung lobe and segmental lobe extraction from 3D chest CT datasets based on figure decomposition and Voronoi division. Proc. Medical Imaging: City
9.
go back to reference Lo P, van Ginneken B, Reinhardt JM, Yavarna T, de Jong PA, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J, Feuerstein M, Fabijanska A, Bauer C, Beichel R, Mendoza CS, Wiemker R, Lee J, Reeves AP, Born S, Weinheimer O, van Rikxoort EM, Tschirren J, Mori K, Odry B, Naidich DP, Hartmann I, Hoffman EA, Prokop M, Pedersen JH, de Bruijne M: Extraction of airways from CT (EXACT'09). IEEE Trans Med Imaging 31:2093–2107, 2012CrossRefPubMed Lo P, van Ginneken B, Reinhardt JM, Yavarna T, de Jong PA, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J, Feuerstein M, Fabijanska A, Bauer C, Beichel R, Mendoza CS, Wiemker R, Lee J, Reeves AP, Born S, Weinheimer O, van Rikxoort EM, Tschirren J, Mori K, Odry B, Naidich DP, Hartmann I, Hoffman EA, Prokop M, Pedersen JH, de Bruijne M: Extraction of airways from CT (EXACT'09). IEEE Trans Med Imaging 31:2093–2107, 2012CrossRefPubMed
10.
go back to reference Aykac D, Hoffman EA, McLennan G, Reinhardt JM: Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22:940–950, 2003CrossRefPubMed Aykac D, Hoffman EA, McLennan G, Reinhardt JM: Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22:940–950, 2003CrossRefPubMed
11.
go back to reference Mori K, Hasegawa J-I, Toriwaki J-I, Anno H, Katada K: Automated extraction and visualization of bronchus from 3D CT images of lung. Proc. Computer Vision, Virtual Reality and Robotics in Medicine: City Mori K, Hasegawa J-I, Toriwaki J-I, Anno H, Katada K: Automated extraction and visualization of bronchus from 3D CT images of lung. Proc. Computer Vision, Virtual Reality and Robotics in Medicine: City
12.
go back to reference Singh H, Crawford M, Curtin J, Zwiggelaar R: Automated 3D segmentation of the lung airway tree using gain-based region growing approach. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City Singh H, Crawford M, Curtin J, Zwiggelaar R: Automated 3D segmentation of the lung airway tree using gain-based region growing approach. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City
13.
go back to reference Sonka M, Park W, Hoffman EA: Rule-based detection of intrathoracic airway trees. IEEE Trans Med Imaging 15:314–326, 1996CrossRefPubMed Sonka M, Park W, Hoffman EA: Rule-based detection of intrathoracic airway trees. IEEE Trans Med Imaging 15:314–326, 1996CrossRefPubMed
14.
go back to reference Kitasaka T, Mori K, Hasegawa J, Toriwaki J: A method for extraction of bronchus regions from 3D branch tracing and image sharpening for airway tree chest X-ray images by analyzing structural features of the bronchus. Forma 17:321–338, 2002 Kitasaka T, Mori K, Hasegawa J, Toriwaki J: A method for extraction of bronchus regions from 3D branch tracing and image sharpening for airway tree chest X-ray images by analyzing structural features of the bronchus. Forma 17:321–338, 2002
15.
go back to reference Tschirren J, Hoffman EA, McLennan G, Sonka M: Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans Med Imaging 24:1529–1539, 2005CrossRefPubMedPubMedCentral Tschirren J, Hoffman EA, McLennan G, Sonka M: Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans Med Imaging 24:1529–1539, 2005CrossRefPubMedPubMedCentral
16.
go back to reference Feuerstein M, Kitasaka T, Mori K: Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT. Proc. Proc Second International Workshop on Pulmonary Image Analysis: City Feuerstein M, Kitasaka T, Mori K: Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT. Proc. Proc Second International Workshop on Pulmonary Image Analysis: City
17.
go back to reference Schlathoelter T, Lorenz C, Carlsen IC, Renisch S, Deschamps T: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. Proc Medical Imaging 2002: City Schlathoelter T, Lorenz C, Carlsen IC, Renisch S, Deschamps T: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. Proc Medical Imaging 2002: City
18.
go back to reference Lo P, Sporring J, Ashraf H, Pedersen JJ, de Bruijne M: Vessel-guided airway tree segmentation: A voxel classification approach. Med Image Anal 14:527–538, 2010CrossRefPubMed Lo P, Sporring J, Ashraf H, Pedersen JJ, de Bruijne M: Vessel-guided airway tree segmentation: A voxel classification approach. Med Image Anal 14:527–538, 2010CrossRefPubMed
19.
go back to reference Bauer C, Eberlein M, Beichel RR: Graph-based airway tree reconstruction from chest CT scans: evaluation of different features on five cohorts. IEEE Trans Med Imaging 34:1063–1076, 2015CrossRefPubMed Bauer C, Eberlein M, Beichel RR: Graph-based airway tree reconstruction from chest CT scans: evaluation of different features on five cohorts. IEEE Trans Med Imaging 34:1063–1076, 2015CrossRefPubMed
20.
go back to reference Lo P, de Bruijne M: Voxel classification based airway tree segmentation. Proc. Medical Imaging: City Lo P, de Bruijne M: Voxel classification based airway tree segmentation. Proc. Medical Imaging: City
21.
go back to reference Yano H, Marco F, Kitasaka T, Mori K: Study on bronchus region extraction from 3D chest CT images using loca1 intensity structure analysis and CT value distribution feature. The institute of electronics information and communication, MI2009–13:69–74, 2009 Yano H, Marco F, Kitasaka T, Mori K: Study on bronchus region extraction from 3D chest CT images using loca1 intensity structure analysis and CT value distribution feature. The institute of electronics information and communication, MI2009–13:69–74, 2009
22.
go back to reference Xu Z, Bagci U, Foster B, Mansoor A, Udupa JK, Mollura DJ: A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med Image Anal 24:1–17, 2015CrossRefPubMedPubMedCentral Xu Z, Bagci U, Foster B, Mansoor A, Udupa JK, Mollura DJ: A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med Image Anal 24:1–17, 2015CrossRefPubMedPubMedCentral
23.
go back to reference Meng Q, Kitasaka T, Nimura Y, Oda M, Ueno J, Mori K: Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Int J Comput Assist Radiol Surg:1–17, 2016 Meng Q, Kitasaka T, Nimura Y, Oda M, Ueno J, Mori K: Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Int J Comput Assist Radiol Surg:1–17, 2016
24.
go back to reference Chae EJ, Seo JB, Song JW, Kim N, Park BW, Lee YK, Oh YM, Lee SD, Lim SY: Slope of emphysema index: an objective descriptor of regional heterogeneity of emphysema and an independent determinant of pulmonary function. Am J Roentgenol 194:W248–W255, 2010CrossRef Chae EJ, Seo JB, Song JW, Kim N, Park BW, Lee YK, Oh YM, Lee SD, Lim SY: Slope of emphysema index: an objective descriptor of regional heterogeneity of emphysema and an independent determinant of pulmonary function. Am J Roentgenol 194:W248–W255, 2010CrossRef
25.
go back to reference Ballard DH: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 13:111–122, 1981CrossRef Ballard DH: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 13:111–122, 1981CrossRef
26.
go back to reference Frangi AF, Niessen WJ, Vincken KL, Viergever MA: Multiscale vessel enhancement filtering. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City Frangi AF, Niessen WJ, Vincken KL, Viergever MA: Multiscale vessel enhancement filtering. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City
27.
go back to reference Serra J: Image analysis and mathematical morphology, v. 1. Academic press, 1982 Serra J: Image analysis and mathematical morphology, v. 1. Academic press, 1982
28.
go back to reference Kong TY, Rosenfeld A: Topological algorithms for digital image processing. Elsevier, 1996 Kong TY, Rosenfeld A: Topological algorithms for digital image processing. Elsevier, 1996
29.
go back to reference Kimmel R, Shaked D, Kiryati N, Bruckstein AM: Skeletonization via distance maps and level sets. Proc. Photonics for Industrial Applications: City Kimmel R, Shaked D, Kiryati N, Bruckstein AM: Skeletonization via distance maps and level sets. Proc. Photonics for Industrial Applications: City
30.
go back to reference Telea A, Vilanova A: A robust level-set algorithm for centerline extraction. Proc. Proceedings of the symposium on Data visualisation 2003: City Telea A, Vilanova A: A robust level-set algorithm for centerline extraction. Proc. Proceedings of the symposium on Data visualisation 2003: City
31.
go back to reference Udupa JK, Samarasekera S: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58:246–261, 1996CrossRef Udupa JK, Samarasekera S: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58:246–261, 1996CrossRef
32.
go back to reference Chang Y, Lim J, Kim N, Seo JB, Lynch DA: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40:051912, 2013CrossRefPubMed Chang Y, Lim J, Kim N, Seo JB, Lynch DA: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40:051912, 2013CrossRefPubMed
33.
go back to reference Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at ct 1. Radiology 228:871–877, 2003CrossRefPubMed Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at ct 1. Radiology 228:871–877, 2003CrossRefPubMed
34.
go back to reference Kim N, Seo JB, Lee Y, Lee JG, Kim SS, Kang S-H: Development of an automatic classification system for differentiation of obstructive lung disease using HRCT. J Digit Imaging 22:136–148, 2009CrossRefPubMed Kim N, Seo JB, Lee Y, Lee JG, Kim SS, Kang S-H: Development of an automatic classification system for differentiation of obstructive lung disease using HRCT. J Digit Imaging 22:136–148, 2009CrossRefPubMed
35.
go back to reference Rudyanto RD, Kerkstra S, van Rikxoort EM, Fetita C, Brillet PY, Lefevre C, Xue W, Zhu X, Liang J, Öksüz İ, Ünay D, Kadipaşaogˇlu K, Estépar RSJ, Ross JC, Washko GR, Prieto JC, Hoyos MH, Orkisz M, Meine H, Hüllebrand M, Stöcker C, Mir FL, Naranjo V, Villanueva E, Staring M, Xiao C, Stoel BC, Fabijanska A, Smistad E, Elster AC, Lindseth F, Foruzan AH, Kiros R, Popuri K, Cobzas D, Jimenez-Carretero D, Santos A, Ledesma-Carbayo MJ, Helmberger M, Urschler M, Pienn M, Bosboom DGH, Campo A, Prokop M, de Jong PA, Ortiz-de-Solorzano C, Muñoz-Barrutia A, van Ginneken B: Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Med Image Anal 18:1217–1232, 2014CrossRefPubMedPubMedCentral Rudyanto RD, Kerkstra S, van Rikxoort EM, Fetita C, Brillet PY, Lefevre C, Xue W, Zhu X, Liang J, Öksüz İ, Ünay D, Kadipaşaogˇlu K, Estépar RSJ, Ross JC, Washko GR, Prieto JC, Hoyos MH, Orkisz M, Meine H, Hüllebrand M, Stöcker C, Mir FL, Naranjo V, Villanueva E, Staring M, Xiao C, Stoel BC, Fabijanska A, Smistad E, Elster AC, Lindseth F, Foruzan AH, Kiros R, Popuri K, Cobzas D, Jimenez-Carretero D, Santos A, Ledesma-Carbayo MJ, Helmberger M, Urschler M, Pienn M, Bosboom DGH, Campo A, Prokop M, de Jong PA, Ortiz-de-Solorzano C, Muñoz-Barrutia A, van Ginneken B: Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Med Image Anal 18:1217–1232, 2014CrossRefPubMedPubMedCentral
36.
go back to reference Xiao C, Staring M, Shamonin D, Reiber JH, Stolk J, Stoel BC: A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med Image Anal 15:112–124, 2011CrossRefPubMed Xiao C, Staring M, Shamonin D, Reiber JH, Stolk J, Stoel BC: A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med Image Anal 15:112–124, 2011CrossRefPubMed
37.
go back to reference Cortes C, Vapnik V: Support-vector networks. Mach Learn 20:273–297, 1995 Cortes C, Vapnik V: Support-vector networks. Mach Learn 20:273–297, 1995
38.
go back to reference Keshani M, Azimifar Z, Tajeripour F, Boostani R: Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system. Comput Biol Med 43:287–300, 2013CrossRefPubMed Keshani M, Azimifar Z, Tajeripour F, Boostani R: Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system. Comput Biol Med 43:287–300, 2013CrossRefPubMed
39.
go back to reference Smola AJ, Schölkopf B: Learning with kernels: Citeseer, 1998 Smola AJ, Schölkopf B: Learning with kernels: Citeseer, 1998
Metadata
Title
Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans
Authors
Minho Lee
June-Goo Lee
Namkug Kim
Joon Beom Seo
Sang Min Lee
Publication date
01-10-2019
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 5/2019
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-018-0158-8

Other articles of this Issue 5/2019

Journal of Digital Imaging 5/2019 Go to the issue