Skip to main content
Top
Published in: Journal of Digital Imaging 3/2018

Open Access 01-06-2018

Towards Portable Large-Scale Image Processing with High-Performance Computing

Authors: Yuankai Huo, Justin Blaber, Stephen M. Damon, Brian D. Boyd, Shunxing Bao, Prasanna Parvathaneni, Camilo Bermudez Noguera, Shikha Chaganti, Vishwesh Nath, Jasmine M. Greer, Ilwoo Lyu, William R. French, Allen T. Newton, Baxter P. Rogers, Bennett A. Landman

Published in: Journal of Imaging Informatics in Medicine | Issue 3/2018

Login to get access

Abstract

High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called “spiders.” The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Izzo M: Biomedical Research and Integrated Biobanking: An Innovative Paradigm for Heterogeneous Data Management. Berlin: Springer, 2016CrossRef Izzo M: Biomedical Research and Integrated Biobanking: An Innovative Paradigm for Heterogeneous Data Management. Berlin: Springer, 2016CrossRef
2.
go back to reference Marcus DS, Olsen TR, Ramaratnam M, Buckner RL: The extensible neuroimaging archive toolkit. Neuroinformatics 5:11–33, 2007CrossRef Marcus DS, Olsen TR, Ramaratnam M, Buckner RL: The extensible neuroimaging archive toolkit. Neuroinformatics 5:11–33, 2007CrossRef
3.
go back to reference Marco F: XTENS—an eXTensible environment for neuroscience. Healthgrid Research, Innovation, and Business Case: Proceedings of HealthGrid 147:127, 2009 Marco F: XTENS—an eXTensible environment for neuroscience. Healthgrid Research, Innovation, and Business Case: Proceedings of HealthGrid 147:127, 2009
4.
go back to reference Scott A, Courtney W, Wood D, de la Garza R, Lane S, King M, Wang R, Roberts J, Turner JA, Calhoun VD: COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in Neuroinformatics 5, 2011 Scott A, Courtney W, Wood D, de la Garza R, Lane S, King M, Wang R, Roberts J, Turner JA, Calhoun VD: COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in Neuroinformatics 5, 2011
5.
go back to reference Harrigan RL, Yvernault BC, Boyd BD, Damon SM, Gibney KD, Conrad BN, Phillips NS, Rogers BP, Gao Y, Landman BA: Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: a multimodal data archive and processing environment. NeuroImage 124:1097–1101, 2016CrossRef Harrigan RL, Yvernault BC, Boyd BD, Damon SM, Gibney KD, Conrad BN, Phillips NS, Rogers BP, Gao Y, Landman BA: Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: a multimodal data archive and processing environment. NeuroImage 124:1097–1101, 2016CrossRef
6.
go back to reference Gao Y, et al.: Integration of XNAT/PACS, DICOM, and research software for automated multi-modal image analysis. Proc. Proceedings of SPIE: City Gao Y, et al.: Integration of XNAT/PACS, DICOM, and research software for automated multi-modal image analysis. Proc. Proceedings of SPIE: City
7.
go back to reference Damon SM, et al.: Versatile big data imaging analytics with containerized high-performance computing, Baltimore, MD, USA, 2017 Damon SM, et al.: Versatile big data imaging analytics with containerized high-performance computing, Baltimore, MD, USA, 2017
8.
go back to reference Damon SM, Boyd BD, Plassard AJ, Taylor W, Landman BA: DAX-the next generation: towards one million processes on commodity hardware. Proc. SPIE Medical Imaging: City Damon SM, Boyd BD, Plassard AJ, Taylor W, Landman BA: DAX-the next generation: towards one million processes on commodity hardware. Proc. SPIE Medical Imaging: City
9.
go back to reference Asman AJ, Landman BA: Non-local statistical label fusion for multi-atlas segmentation. Medical Image Analysis 17:194–208, 2013CrossRef Asman AJ, Landman BA: Non-local statistical label fusion for multi-atlas segmentation. Medical Image Analysis 17:194–208, 2013CrossRef
10.
go back to reference Tustison NJ, Avants BB, Cook PA, Yuanjie Zheng, Egan A, Yushkevich PA, Gee JC: N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging 29:1310–1320, 2010CrossRef Tustison NJ, Avants BB, Cook PA, Yuanjie Zheng, Egan A, Yushkevich PA, Gee JC: N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging 29:1310–1320, 2010CrossRef
11.
go back to reference Ourselin S, Roche A, Subsol G, Pennec X, Ayache N: Reconstructing a 3D structure from serial histological sections. Image Vision Comput 19:25–31, 2001CrossRef Ourselin S, Roche A, Subsol G, Pennec X, Ayache N: Reconstructing a 3D structure from serial histological sections. Image Vision Comput 19:25–31, 2001CrossRef
12.
go back to reference Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738, 2009CrossRef Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738, 2009CrossRef
13.
go back to reference Huo Y, Asman AJ, Plassard AJ, Landman BA: Simultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusion. Human Brain Mapping 38:599–616, 2017CrossRef Huo Y, Asman AJ, Plassard AJ, Landman BA: Simultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusion. Human Brain Mapping 38:599–616, 2017CrossRef
14.
go back to reference Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, Landman BA: Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Medical Image Analysis 24:18–27, 2015CrossRef Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, Landman BA: Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Medical Image Analysis 24:18–27, 2015CrossRef
15.
go back to reference Merkel D: Docker: lightweight linux containers for consistent development and deployment. Linux Journal 2:2014, 2014 Merkel D: Docker: lightweight linux containers for consistent development and deployment. Linux Journal 2:2014, 2014
16.
go back to reference Kurtzer GM, Sochat V, Bauer MW: Singularity: scientific containers for mobility of compute. PloS One 12:e0177459, 2017CrossRef Kurtzer GM, Sochat V, Bauer MW: Singularity: scientific containers for mobility of compute. PloS One 12:e0177459, 2017CrossRef
17.
go back to reference Schwartz Y, Barbot A, Thyreau B, Frouin V, Varoquaux G, Siram A, Marcus DS, Poline JB: PyXNAT: XNAT in python. Frontiers in Neuroinformatics 6, 2012 Schwartz Y, Barbot A, Thyreau B, Frouin V, Varoquaux G, Siram A, Marcus DS, Poline JB: PyXNAT: XNAT in python. Frontiers in Neuroinformatics 6, 2012
18.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG: Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics 42:377–381, 2009CrossRef Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG: Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics 42:377–381, 2009CrossRef
19.
go back to reference Cox RW et al.: A (sort of) new image data format standard: Nifti-1. Neuroimage 22:e1440, 2004 Cox RW et al.: A (sort of) new image data format standard: Nifti-1. Neuroimage 22:e1440, 2004
20.
go back to reference Bao S, Weitendorf FD, Plassard AJ, Huo Y, Gokhale A, Landman BA: Theoretical and empirical comparison of big data image processing with apache hadoop and sun grid engine. Proc. SPIE Medical Imaging: City Bao S, Weitendorf FD, Plassard AJ, Huo Y, Gokhale A, Landman BA: Theoretical and empirical comparison of big data image processing with apache hadoop and sun grid engine. Proc. SPIE Medical Imaging: City
21.
go back to reference Gentzsch W: Sun grid engine: towards creating a compute power grid. Proc. Cluster Computing and the Grid, 2001Proceedings First IEEE/ACM International Symposium on: City Gentzsch W: Sun grid engine: towards creating a compute power grid. Proc. Cluster Computing and the Grid, 2001Proceedings First IEEE/ACM International Symposium on: City
22.
go back to reference Yoo AB, Jette MA, Grondona M: Slurm: simple linux utility for resource management. Proc. Workshop on Job Scheduling Strategies for Parallel Processing: City Yoo AB, Jette MA, Grondona M: Slurm: simple linux utility for resource management. Proc. Workshop on Job Scheduling Strategies for Parallel Processing: City
23.
go back to reference Staples G: TORQUE resource manager. Proc. Proceedings of the 2006ACM/IEEE conference on Supercomputing: City Staples G: TORQUE resource manager. Proc. Proceedings of the 2006ACM/IEEE conference on Supercomputing: City
25.
go back to reference Mechelli A, Price CJ, Friston KJ, Ashburner J: Voxel-based morphometry of the human brain: methods and applications. Current Medical Imaging Reviews 1:105–113, 2005CrossRef Mechelli A, Price CJ, Friston KJ, Ashburner J: Voxel-based morphometry of the human brain: methods and applications. Current Medical Imaging Reviews 1:105–113, 2005CrossRef
26.
go back to reference Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, de Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, de Stefano N, Brady JM, Matthews PM: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219, 2004CrossRef Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, de Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, de Stefano N, Brady JM, Matthews PM: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219, 2004CrossRef
27.
go back to reference Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM: Fsl. Neuroimage 62:782–790, 2012CrossRef Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM: Fsl. Neuroimage 62:782–790, 2012CrossRef
28.
go back to reference Lauzon CB, Landman BA: Correcting power and p-value calculations for bias in diffusion tensor imaging. Magnetic Resonance Imaging 31:857–864, 2013CrossRef Lauzon CB, Landman BA: Correcting power and p-value calculations for bias in diffusion tensor imaging. Magnetic Resonance Imaging 31:857–864, 2013CrossRef
29.
go back to reference Lauzon CB, Asman AJ, Esparza ML, Burns SS, Fan Q, Gao Y, Anderson AW, Davis N, Cutting LE, Landman BA: Simultaneous analysis and quality assurance for diffusion tensor imaging. PloS one 8:e61737, 2013CrossRef Lauzon CB, Asman AJ, Esparza ML, Burns SS, Fan Q, Gao Y, Anderson AW, Davis N, Cutting LE, Landman BA: Simultaneous analysis and quality assurance for diffusion tensor imaging. PloS one 8:e61737, 2013CrossRef
30.
go back to reference Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155, 2007CrossRef Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155, 2007CrossRef
31.
go back to reference Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505, 2006CrossRef Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505, 2006CrossRef
32.
go back to reference Yendiki A, et al.: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics 5, 2011 Yendiki A, et al.: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics 5, 2011
33.
go back to reference Parvathaneni P, et al.: Gray Matter Surface based Spatial Statistics (GS-BSS) in diffusion microstructure. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City Parvathaneni P, et al.: Gray Matter Surface based Spatial Statistics (GS-BSS) in diffusion microstructure. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City
34.
go back to reference Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince JL: CRUISE: cortical reconstruction using implicit surface evolution. NeuroImage 23:997–1012, 2004CrossRef Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince JL: CRUISE: cortical reconstruction using implicit surface evolution. NeuroImage 23:997–1012, 2004CrossRef
35.
go back to reference Huo Y, Plassard AJ, Carass A, Resnick SM, Pham DL, Prince JL, Landman BA: Consistent cortical reconstruction and multi-atlas brain segmentation. NeuroImage 138:197–210, 2016CrossRef Huo Y, Plassard AJ, Carass A, Resnick SM, Pham DL, Prince JL, Landman BA: Consistent cortical reconstruction and multi-atlas brain segmentation. NeuroImage 138:197–210, 2016CrossRef
36.
go back to reference Huo Y, Carass A, Resnick SM, Pham DL, Prince JL, Landman BA: Combining multi-atlas segmentation with brain surface estimation. Proc. Proceedings of SPIE—The International Society for Optical Engineering: City Huo Y, Carass A, Resnick SM, Pham DL, Prince JL, Landman BA: Combining multi-atlas segmentation with brain surface estimation. Proc. Proceedings of SPIE—The International Society for Optical Engineering: City
37.
go back to reference Huo Y, Bao S, Parvathaneni P, Landman BA: Improved stability of whole brain surface parcellation with multi-atlas segmentation. Proc. SPIE Medical Imaging: City Huo Y, Bao S, Parvathaneni P, Landman BA: Improved stability of whole brain surface parcellation with multi-atlas segmentation. Proc. SPIE Medical Imaging: City
38.
go back to reference Lyu I, Kim SH, Bullins J, Gilmore JH, Styner MA: Novel Local Shape-Adaptive Gyrification Index with Application to Brain Development. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City Lyu I, Kim SH, Bullins J, Gilmore JH, Styner MA: Novel Local Shape-Adaptive Gyrification Index with Application to Brain Development. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City
39.
go back to reference Lyu I, Kim SH, Styner MA: Cortical surface shape assessment via sulcal/gyral curve-based gyrification index. Proc. Biomedical Imaging (ISBI), 2016 I.E. 13th International Symposium on: City Lyu I, Kim SH, Styner MA: Cortical surface shape assessment via sulcal/gyral curve-based gyrification index. Proc. Biomedical Imaging (ISBI), 2016 I.E. 13th International Symposium on: City
40.
go back to reference Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage 49:1524–1535, 2010CrossRef Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage 49:1524–1535, 2010CrossRef
41.
go back to reference Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Mühlau M: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59:3774–3783, 2012CrossRef Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Mühlau M: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59:3774–3783, 2012CrossRef
42.
go back to reference Friedman L, Glover GH: Report on a multicenter fMRI quality assurance protocol. Journal of Magnetic Resonance Imaging 23:827–839, 2006CrossRef Friedman L, Glover GH: Report on a multicenter fMRI quality assurance protocol. Journal of Magnetic Resonance Imaging 23:827–839, 2006CrossRef
43.
go back to reference Huo Y, et al.: Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. Proc. SPIE Medical Imaging: City Huo Y, et al.: Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. Proc. SPIE Medical Imaging: City
44.
go back to reference Smith JE, Nair R: The architecture of virtual machines. Computer 38:32–38, 2005CrossRef Smith JE, Nair R: The architecture of virtual machines. Computer 38:32–38, 2005CrossRef
45.
go back to reference Baoa S, Weitendorfa FD, Plassarda AJ, Huob Y, Gokhalea A, Landmana BA: Theoretical and empirical comparison of big data image processing with apache hadoop and sun grid engine. Proc. SPIE Medical Imaging: City Baoa S, Weitendorfa FD, Plassarda AJ, Huob Y, Gokhalea A, Landmana BA: Theoretical and empirical comparison of big data image processing with apache hadoop and sun grid engine. Proc. SPIE Medical Imaging: City
46.
go back to reference Bao S, et al.: A data colocation grid framework for big data medical image processing: backend design. Proc. SPIE Medical Imaging: City Bao S, et al.: A data colocation grid framework for big data medical image processing: backend design. Proc. SPIE Medical Imaging: City
47.
go back to reference Bao S, Plassard AJ, Landman BA, Gokhale A: Cloud engineering principles and technology enablers for medical image processing-as-a-service. Proc. Cloud Engineering (IC2E), 2017IEEE International Conference on: City Bao S, Plassard AJ, Landman BA, Gokhale A: Cloud engineering principles and technology enablers for medical image processing-as-a-service. Proc. Cloud Engineering (IC2E), 2017IEEE International Conference on: City
Metadata
Title
Towards Portable Large-Scale Image Processing with High-Performance Computing
Authors
Yuankai Huo
Justin Blaber
Stephen M. Damon
Brian D. Boyd
Shunxing Bao
Prasanna Parvathaneni
Camilo Bermudez Noguera
Shikha Chaganti
Vishwesh Nath
Jasmine M. Greer
Ilwoo Lyu
William R. French
Allen T. Newton
Baxter P. Rogers
Bennett A. Landman
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 3/2018
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-018-0080-0

Other articles of this Issue 3/2018

Journal of Digital Imaging 3/2018 Go to the issue