Skip to main content
Top
Published in: Journal of Digital Imaging 1/2018

01-02-2018

Workflow for Visualization of Neuroimaging Data with an Augmented Reality Device

Authors: Christof Karmonik, Timothy B. Boone, Rose Khavari

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2018

Login to get access

Abstract

Commercial availability of three-dimensional (3D) augmented reality (AR) devices has increased interest in using this novel technology for visualizing neuroimaging data. Here, a technical workflow and algorithm for importing 3D surface-based segmentations derived from magnetic resonance imaging data into a head-mounted AR device is presented and illustrated on selected examples: the pial cortical surface of the human brain, fMRI BOLD maps, reconstructed white matter tracts, and a brain network of functional connectivity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Azuma RT: A survey of augmented reality. Presence Teleop Virt 6(4):355–385, 1997CrossRef Azuma RT: A survey of augmented reality. Presence Teleop Virt 6(4):355–385, 1997CrossRef
2.
go back to reference Milgram P, Kishino F: A taxonomy of mixed reality visual displays. IEIC Transactions on Information and Systems, E77D:12, 1321–29,1994 Milgram P, Kishino F: A taxonomy of mixed reality visual displays. IEIC Transactions on Information and Systems, E77D:12, 1321–29,1994
3.
go back to reference Abe Y, Sato S, Kato K et al.: A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J Neurosurg Spine 19(4):492–501, 2013CrossRefPubMed Abe Y, Sato S, Kato K et al.: A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J Neurosurg Spine 19(4):492–501, 2013CrossRefPubMed
4.
go back to reference Blackwell M, Morgan F, DiGioia, 3rd AM: Augmented reality and its future in orthopaedics. Clin Orthop Relat Res 354:111–122, 1998CrossRef Blackwell M, Morgan F, DiGioia, 3rd AM: Augmented reality and its future in orthopaedics. Clin Orthop Relat Res 354:111–122, 1998CrossRef
5.
go back to reference Kerner KF, et al.: Augmented reality for teaching endotracheal intubation: MR imaging to create anatomically correct models. AMIA Annu Symp Proc p. 888,2003 Kerner KF, et al.: Augmented reality for teaching endotracheal intubation: MR imaging to create anatomically correct models. AMIA Annu Symp Proc p. 888,2003
6.
go back to reference Nicolau S et al.: Augmented reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–201, 2011CrossRefPubMed Nicolau S et al.: Augmented reality in laparoscopic surgical oncology. Surg Oncol 20(3):189–201, 2011CrossRefPubMed
7.
go back to reference Fritz J et al.: Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol 48(6):464–470, 2013CrossRefPubMed Fritz J et al.: Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol 48(6):464–470, 2013CrossRefPubMed
8.
go back to reference Volonte F et al.: Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console. Int J Med Robot 9(3):e34–e38, 2013CrossRefPubMed Volonte F et al.: Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console. Int J Med Robot 9(3):e34–e38, 2013CrossRefPubMed
9.
go back to reference Markman A et al.: Augmented reality three-dimensional object visualization and recognition with axially distributed sensing. Opt Lett 41(2):297–300, 2016CrossRefPubMed Markman A et al.: Augmented reality three-dimensional object visualization and recognition with axially distributed sensing. Opt Lett 41(2):297–300, 2016CrossRefPubMed
10.
go back to reference Chinnock C: Virtual reality in surgery and medicine. Hosp Technol Ser 13(18):1–48, 1994PubMed Chinnock C: Virtual reality in surgery and medicine. Hosp Technol Ser 13(18):1–48, 1994PubMed
11.
12.
go back to reference Olofsson J et al.: Advanced 3D-visualization, including virtual reality, distributed by PCs, in brain research, clinical radiology and education. Stud Health Technol Inform 50:357–358, 1998PubMed Olofsson J et al.: Advanced 3D-visualization, including virtual reality, distributed by PCs, in brain research, clinical radiology and education. Stud Health Technol Inform 50:357–358, 1998PubMed
13.
go back to reference Webb G et al.: Virtual reality and interactive 3D as effective tools for medical training. Stud Health Technol Inform 94:392–394, 2003PubMed Webb G et al.: Virtual reality and interactive 3D as effective tools for medical training. Stud Health Technol Inform 94:392–394, 2003PubMed
14.
go back to reference Farber M et al.: Virtual reality simulator for the training of lumbar punctures. Methods Inf Med 48(5):493–501, 2009CrossRefPubMed Farber M et al.: Virtual reality simulator for the training of lumbar punctures. Methods Inf Med 48(5):493–501, 2009CrossRefPubMed
15.
go back to reference Clarke DB et al.: Virtual reality simulator: demonstrated use in neurosurgical oncology. Surg Innov 20(2):190–197, 2013CrossRefPubMed Clarke DB et al.: Virtual reality simulator: demonstrated use in neurosurgical oncology. Surg Innov 20(2):190–197, 2013CrossRefPubMed
16.
go back to reference Mi SH et al.: A 3D virtual reality simulator for training of minimally invasive surgery. Conf Proc IEEE Eng Med Biol Soc 2014:349–352, 2014PubMed Mi SH et al.: A 3D virtual reality simulator for training of minimally invasive surgery. Conf Proc IEEE Eng Med Biol Soc 2014:349–352, 2014PubMed
17.
go back to reference Khavari R et al.: Functional magnetic resonance imaging with concurrent urodynamic testing identifies brain structures involved in micturition cycle in patients with multiple sclerosis. J Urol 197:438–444, 2016CrossRefPubMedPubMedCentral Khavari R et al.: Functional magnetic resonance imaging with concurrent urodynamic testing identifies brain structures involved in micturition cycle in patients with multiple sclerosis. J Urol 197:438–444, 2016CrossRefPubMedPubMedCentral
18.
go back to reference Shy M et al.: Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition. J Urol 192(4):1149–1154, 2014CrossRefPubMedPubMedCentral Shy M et al.: Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition. J Urol 192(4):1149–1154, 2014CrossRefPubMedPubMedCentral
19.
go back to reference Bidgood, Jr WD, Horii SC: Introduction to the ACR-NEMA DICOM standard. Radiographics 12(2):345–355, 1992CrossRefPubMed Bidgood, Jr WD, Horii SC: Introduction to the ACR-NEMA DICOM standard. Radiographics 12(2):345–355, 1992CrossRefPubMed
20.
go back to reference John NW et al.: MedX3D: standards enabled desktop medical 3D. Stud Health Technol Inform 132:189–194, 2008PubMed John NW et al.: MedX3D: standards enabled desktop medical 3D. Stud Health Technol Inform 132:189–194, 2008PubMed
22.
24.
go back to reference Xie S et al.: DiffusionKit: a light one-stop solution for diffusion MRI data analysis. J Neurosci Methods 273:107–119, 2016CrossRefPubMed Xie S et al.: DiffusionKit: a light one-stop solution for diffusion MRI data analysis. J Neurosci Methods 273:107–119, 2016CrossRefPubMed
26.
go back to reference Berlage T: Augmented-reality communication for diagnostic tasks in cardiology. IEEE Trans Inf Technol Biomed 2(3):169–173, 1998CrossRefPubMed Berlage T: Augmented-reality communication for diagnostic tasks in cardiology. IEEE Trans Inf Technol Biomed 2(3):169–173, 1998CrossRefPubMed
27.
go back to reference Sato Y et al.: Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imaging 17(5):681–693, 1998CrossRefPubMed Sato Y et al.: Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imaging 17(5):681–693, 1998CrossRefPubMed
28.
go back to reference Kawamata T et al.: Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery 50(6):1393–1397, 2002PubMed Kawamata T et al.: Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery 50(6):1393–1397, 2002PubMed
29.
go back to reference Paul P, Fleig O, Jannin P: Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation. IEEE Trans Med Imaging 24(11):1500–1511, 2005CrossRefPubMed Paul P, Fleig O, Jannin P: Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation. IEEE Trans Med Imaging 24(11):1500–1511, 2005CrossRefPubMed
30.
go back to reference Lukosch S, Billinghurst M, Alem L et al.: The effect of view independence in a collaborative AR system. Computer supported cooperative work. J Collab Comput 24(6):563–589, 2015 Lukosch S, Billinghurst M, Alem L et al.: The effect of view independence in a collaborative AR system. Computer supported cooperative work. J Collab Comput 24(6):563–589, 2015
31.
go back to reference Lukosch S, Billinghurst M, Alem L et al.: Collaboration in augmented reality. Computer supported cooperative work. J Collab Comput 24(6):515–525, 2015 Lukosch S, Billinghurst M, Alem L et al.: Collaboration in augmented reality. Computer supported cooperative work. J Collab Comput 24(6):515–525, 2015
Metadata
Title
Workflow for Visualization of Neuroimaging Data with an Augmented Reality Device
Authors
Christof Karmonik
Timothy B. Boone
Rose Khavari
Publication date
01-02-2018
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2018
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-017-9991-4

Other articles of this Issue 1/2018

Journal of Digital Imaging 1/2018 Go to the issue