Skip to main content
Top
Published in: Journal of Digital Imaging 4/2018

01-08-2018

Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT

Authors: Kensuke Umehara, Junko Ota, Takayuki Ishida

Published in: Journal of Imaging Informatics in Medicine | Issue 4/2018

Login to get access

Abstract

In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
Literature
1.
go back to reference Park SC, Park MK, Kang MG: Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36, 2003CrossRef Park SC, Park MK, Kang MG: Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36, 2003CrossRef
2.
go back to reference Yeh JJ, Chen SCC, Teng WB, Chou CH, Hsieh SP, Lee TL, Wu MT: Identifying the most infectious lesions in pulmonary tuberculosis by high-resolution multi-detector computed tomography. Eur Radiol 20(9):2135–2145, 2010CrossRefPubMed Yeh JJ, Chen SCC, Teng WB, Chou CH, Hsieh SP, Lee TL, Wu MT: Identifying the most infectious lesions in pulmonary tuberculosis by high-resolution multi-detector computed tomography. Eur Radiol 20(9):2135–2145, 2010CrossRefPubMed
3.
go back to reference Akira M, Inoue Y, Arai T, Sugimoto C, Tokura S, Nakata K, Kitaichi M: Osaka respiratory diseases symposia group: pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR 207(3):544–551, 2016 Akira M, Inoue Y, Arai T, Sugimoto C, Tokura S, Nakata K, Kitaichi M: Osaka respiratory diseases symposia group: pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR 207(3):544–551, 2016
4.
go back to reference Lee HY, Lee KS, Jeong YJ, Hwang JH, Kim HJ, Chung MP, Han J: High-resolution CT findings in fibrotic idiopathic interstitial pneumonias with little honeycombing: serial changes and prognostic implications. AJR 199(5):982–989, 2012CrossRefPubMed Lee HY, Lee KS, Jeong YJ, Hwang JH, Kim HJ, Chung MP, Han J: High-resolution CT findings in fibrotic idiopathic interstitial pneumonias with little honeycombing: serial changes and prognostic implications. AJR 199(5):982–989, 2012CrossRefPubMed
5.
go back to reference Mathieson JR, Mayo JR, Staples CA, Müller NL: Chronic diffuse infiltrative lung disease: comparison of diagnostic accuracy of CT and chest radiography. Radiology 171(1):111–116, 1989CrossRefPubMed Mathieson JR, Mayo JR, Staples CA, Müller NL: Chronic diffuse infiltrative lung disease: comparison of diagnostic accuracy of CT and chest radiography. Radiology 171(1):111–116, 1989CrossRefPubMed
6.
go back to reference Itoh H, Murata K, Konishi J, Nishimura K, Kitaichi M, Izumi T: Diffuse lung disease: pathologic basis for the high-resolution computed tomography findings. J Thorac Imaging 8(3):176–188, 1993CrossRefPubMed Itoh H, Murata K, Konishi J, Nishimura K, Kitaichi M, Izumi T: Diffuse lung disease: pathologic basis for the high-resolution computed tomography findings. J Thorac Imaging 8(3):176–188, 1993CrossRefPubMed
8.
go back to reference Siu WC, Hung KW: Review of image interpolation and super-resolution. Proceedings of the 2012 Asia Pacific Signal & Information Processing Association Annual Summit and Conference: 1–10, 2012 Siu WC, Hung KW: Review of image interpolation and super-resolution. Proceedings of the 2012 Asia Pacific Signal & Information Processing Association Annual Summit and Conference: 1–10, 2012
9.
go back to reference Roweis ST, Saul LK: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326, 2000CrossRefPubMed Roweis ST, Saul LK: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326, 2000CrossRefPubMed
10.
go back to reference Yang J, Wright J, Huang TS, Ma Y: Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873, 2010CrossRefPubMed Yang J, Wright J, Huang TS, Ma Y: Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873, 2010CrossRefPubMed
11.
go back to reference Timofte R, De Smet V, Van Gool L: Anchored neighborhood regression for fast example-based super-resolution. Proceedings of the IEEE International Conference on Computer Vision: 1920–1927, 2013 Timofte R, De Smet V, Van Gool L: Anchored neighborhood regression for fast example-based super-resolution. Proceedings of the IEEE International Conference on Computer Vision: 1920–1927, 2013
12.
go back to reference Ota J, Umehara K, Ishimaru N, Ohno S, Okamoto K, Suzuki T, Shirai N, Ishida T: Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography. Proc SPIE 10133: 101331S-1-101331S-9, 2017 Ota J, Umehara K, Ishimaru N, Ohno S, Okamoto K, Suzuki T, Shirai N, Ishida T: Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography. Proc SPIE 10133: 101331S-1-101331S-9, 2017
13.
go back to reference Xie J, Xu L, Chen E: Image denoising and inpainting with deep neural networks. Advances in Neural Information Processing Systems 25:341–349, 2012 Xie J, Xu L, Chen E: Image denoising and inpainting with deep neural networks. Advances in Neural Information Processing Systems 25:341–349, 2012
14.
go back to reference Xu L, Ren JS, Liu C, Jia J: Deep convolutional neural network for image deconvolution. Advances in Neural Information Processing Systems 27:1790–1798, 2014 Xu L, Ren JS, Liu C, Jia J: Deep convolutional neural network for image deconvolution. Advances in Neural Information Processing Systems 27:1790–1798, 2014
15.
go back to reference Dong C, Loy CC, He K, Tang X: Learning a deep convolutional network for image super-resolution. In European Conference on Computer Vision: 184–199, 2014 Dong C, Loy CC, He K, Tang X: Learning a deep convolutional network for image super-resolution. In European Conference on Computer Vision: 184–199, 2014
16.
go back to reference Dong C, Loy CC, He K, Tang X: Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307, 2016CrossRefPubMed Dong C, Loy CC, He K, Tang X: Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307, 2016CrossRefPubMed
17.
go back to reference Umehara K, Ota J, Ishimaru N, Ohno S, Okamoto K, Suzuki T, Shirai N, Ishida T: Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs. Proc SPIE 10133: 101331P-1–101331P-7, 2017 Umehara K, Ota J, Ishimaru N, Ohno S, Okamoto K, Suzuki T, Shirai N, Ishida T: Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs. Proc SPIE 10133: 101331P-1–101331P-7, 2017
18.
go back to reference Umehara K, Ota J, Ishimaru N, Ohno S, Okamoto K, Suzuki T, Ishida T: Performance evaluation of super-resolution methods using deep-learning and sparse-coding for improving the image quality of magnified images in chest radiographs. Open J Med Imaging, 7(3):100–111, 2017 Umehara K, Ota J, Ishimaru N, Ohno S, Okamoto K, Suzuki T, Ishida T: Performance evaluation of super-resolution methods using deep-learning and sparse-coding for improving the image quality of magnified images in chest radiographs. Open J Med Imaging, 7(3):100–111, 2017
20.
go back to reference Aerts HJWL, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5, 1–8, 2014 Aerts HJWL, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5, 1–8, 2014
21.
go back to reference Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F: The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057, 2013 Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F: The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057, 2013
22.
go back to reference Nair V, Hinton GE: Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning: 807–814, 2010 Nair V, Hinton GE: Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning: 807–814, 2010
23.
go back to reference Huynh-Thu Q, Ghanbari M: Scope of validity of PSNR in image/video quality assessment. Electronics Letters 44:800–801, 2008CrossRef Huynh-Thu Q, Ghanbari M: Scope of validity of PSNR in image/video quality assessment. Electronics Letters 44:800–801, 2008CrossRef
24.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP: Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612, 2004CrossRefPubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP: Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612, 2004CrossRefPubMed
25.
go back to reference Avcibas I, Sankur B, Sayood K: Statistical evaluation of image quality measures. J Electron Imaging 11:206–223, 2002CrossRef Avcibas I, Sankur B, Sayood K: Statistical evaluation of image quality measures. J Electron Imaging 11:206–223, 2002CrossRef
Metadata
Title
Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT
Authors
Kensuke Umehara
Junko Ota
Takayuki Ishida
Publication date
01-08-2018
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 4/2018
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-017-0033-z

Other articles of this Issue 4/2018

Journal of Digital Imaging 4/2018 Go to the issue