Skip to main content
Top
Published in: Journal of Digital Imaging 2/2017

01-04-2017

Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images

Published in: Journal of Imaging Informatics in Medicine | Issue 2/2017

Login to get access

Abstract

The purpose of this study is to evaluate transfer learning with deep convolutional neural networks for the classification of abdominal ultrasound images. Grayscale images from 185 consecutive clinical abdominal ultrasound studies were categorized into 11 categories based on the text annotation specified by the technologist for the image. Cropped images were rescaled to 256 × 256 resolution and randomized, with 4094 images from 136 studies constituting the training set, and 1423 images from 49 studies constituting the test set. The fully connected layers of two convolutional neural networks based on CaffeNet and VGGNet, previously trained on the 2012 Large Scale Visual Recognition Challenge data set, were retrained on the training set. Weights in the convolutional layers of each network were frozen to serve as fixed feature extractors. Accuracy on the test set was evaluated for each network. A radiologist experienced in abdominal ultrasound also independently classified the images in the test set into the same 11 categories. The CaffeNet network classified 77.3% of the test set images accurately (1100/1423 images), with a top-2 accuracy of 90.4% (1287/1423 images). The larger VGGNet network classified 77.9% of the test set accurately (1109/1423 images), with a top-2 accuracy of VGGNet was 89.7% (1276/1423 images). The radiologist classified 71.7% of the test set images correctly (1020/1423 images). The differences in classification accuracies between both neural networks and the radiologist were statistically significant (p < 0.001). The results demonstrate that transfer learning with convolutional neural networks may be used to construct effective classifiers for abdominal ultrasound images.
Literature
2.
go back to reference Goodfellow I, Bengio Y, Courville A: Deep Learning, MIT Press (in preparation), 2016 Goodfellow I, Bengio Y, Courville A: Deep Learning, MIT Press (in preparation), 2016
3.
go back to reference Thrall JH: Trends and Developments Shaping the Future of Diagnostic Medical Imaging: 2015 Annual Oration in Diagnostic Radiology. Radiology 279:660–666, 2016CrossRefPubMed Thrall JH: Trends and Developments Shaping the Future of Diagnostic Medical Imaging: 2015 Annual Oration in Diagnostic Radiology. Radiology 279:660–666, 2016CrossRefPubMed
4.
go back to reference Greenspan H, van Ginneken B, Summers RM: Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans Med Imaging 35:1153–1159, 2016CrossRef Greenspan H, van Ginneken B, Summers RM: Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans Med Imaging 35:1153–1159, 2016CrossRef
5.
go back to reference Kato H, Kanematsu M, Zhang X, Saio M, Kondo H, Goshima S, Fujita H: Computer-Aided Diagnosis of Hepatic Fibrosis: Preliminary Evaluation of MRI Texture Analysis Using the Finite Difference Method and an Artificial Neural Network. Am J Roentgenol 189:117–122, 2007CrossRef Kato H, Kanematsu M, Zhang X, Saio M, Kondo H, Goshima S, Fujita H: Computer-Aided Diagnosis of Hepatic Fibrosis: Preliminary Evaluation of MRI Texture Analysis Using the Finite Difference Method and an Artificial Neural Network. Am J Roentgenol 189:117–122, 2007CrossRef
6.
go back to reference Ayer T, Chhatwal J, Alagoz O, Kahn CE, Woods RW, Burnside ES: Comparison of Logistic Regression and Artificial Neural Network Models in Breast Cancer Risk Estimation. RadioGraphics 30:13–22, 2010CrossRefPubMedPubMedCentral Ayer T, Chhatwal J, Alagoz O, Kahn CE, Woods RW, Burnside ES: Comparison of Logistic Regression and Artificial Neural Network Models in Breast Cancer Risk Estimation. RadioGraphics 30:13–22, 2010CrossRefPubMedPubMedCentral
7.
go back to reference Preis O, Blake MA, Scott JA: Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation. Radiology 258:714–721, 2011CrossRefPubMed Preis O, Blake MA, Scott JA: Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation. Radiology 258:714–721, 2011CrossRefPubMed
8.
go back to reference Krizhevsky A, Sutskever I, Hinton GE: ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems (NIPS 2012). Lake Tahoe, 2012 Krizhevsky A, Sutskever I, Hinton GE: ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems (NIPS 2012). Lake Tahoe, 2012
9.
go back to reference Simonyan K, Zisserman A: Very Deep Convolutional Networks for Large-Scale Image Recognition. In: International Conference on Learning Representations 2015. San Diego, 2014 Simonyan K, Zisserman A: Very Deep Convolutional Networks for Large-Scale Image Recognition. In: International Conference on Learning Representations 2015. San Diego, 2014
10.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, 2015, pp 1–9
11.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L: ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 115:211–252, 2015CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L: ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 115:211–252, 2015CrossRef
12.
go back to reference Cho J, Lee K, Shin E, Choy G, Do S: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv:1511.06348, 2015 Cho J, Lee K, Shin E, Choy G, Do S: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv:1511.06348, 2015
13.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans Med Imaging 35:1299–1312, 2016CrossRefPubMed Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans Med Imaging 35:1299–1312, 2016CrossRefPubMed
14.
go back to reference Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging 35:1285–1298, 2016CrossRefPubMed Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging 35:1285–1298, 2016CrossRefPubMed
15.
go back to reference Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging 35:1207–1216, 2016CrossRefPubMed Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging 35:1207–1216, 2016CrossRefPubMed
16.
go back to reference Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks. J Digit Imaging, 2016 Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks. J Digit Imaging, 2016
17.
go back to reference Razavian AS, Azizpour H, Sullivan J, Carlsson S: CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, 2014, pp 512–519 Razavian AS, Azizpour H, Sullivan J, Carlsson S: CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, 2014, pp 512–519
19.
go back to reference Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T: Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv:1408.5093, 2014 Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T: Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv:1408.5093, 2014
22.
go back to reference van der Maaten L, Hinton G: Visualizing Data using t-SNE. J Mach Learn Res 9:2579–2605, 2008 van der Maaten L, Hinton G: Visualizing Data using t-SNE. J Mach Learn Res 9:2579–2605, 2008
23.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D: Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830, 2011 Pedregosa F, Varoquaux G, Gramfort A, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D: Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830, 2011
24.
go back to reference R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2016 R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2016
25.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R: Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J Mach Learn Res 15:1929–1958, 2014 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R: Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J Mach Learn Res 15:1929–1958, 2014
Metadata
Title
Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images
Publication date
01-04-2017
Published in
Journal of Imaging Informatics in Medicine / Issue 2/2017
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-016-9929-2

Other articles of this Issue 2/2017

Journal of Digital Imaging 2/2017 Go to the issue