Skip to main content
Top
Published in: Journal of Digital Imaging 5/2016

Open Access 01-10-2016 | Review Paper

Technical Challenges of Enterprise Imaging: HIMSS-SIIM Collaborative White Paper

Authors: David A. Clunie, Don K. Dennison, Dawn Cram, Kenneth R. Persons, Mark D. Bronkalla, Henri “Rik” Primo

Published in: Journal of Imaging Informatics in Medicine | Issue 5/2016

Login to get access

Abstract

This white paper explores the technical challenges and solutions for acquiring (capturing) and managing enterprise images, particularly those involving visible light applications. The types of acquisition devices used for various general-purpose photography and specialized applications including dermatology, endoscopy, and anatomic pathology are reviewed. The formats and standards used, and the associated metadata requirements and communication protocols for transfer and workflow are considered. Particular emphasis is placed on the importance of metadata capture in both order- and encounter-based workflow. The benefits of using DICOM to provide a standard means of recording and accessing both metadata and image and video data are considered, as is the role of IHE and FHIR.
Glossary
Application Programming Interface (API)
A set of routines, protocols, and tools for building software applications [158].
Clinical Document Architecture (CDA)
A document markup standard that specifies the structure and semantics of clinical documents for the purpose of exchange between healthcare providers and patients [159].
Cross-Enterprise Document Reliable Interchange (XDR)
An IHE integration profile that provides document interchange using a reliable messaging system. This permits direct document interchange between EHRs, PHRs, and other healthcare IT systems in the absence of a document sharing infrastructure such as XDS Registry and Repositories [160].
Cross-Enterprise Document Reliable Interchange of Images (XDR-I)
An IHE content profile for Imaging Document Object transmission using a point-to-point reliable messaging system specified Cross-Enterprise Document Reliable Interchange (XDR) [161].
Cross-Enterprise Document Sharing (XDS)
An IHE integration profile that facilitates the registration, distribution, and access across health enterprises of patient electronic health records [162].
Cross-Enterprise Document Sharing for Imaging (XDS-I)
An IHE integration profile that extends XDS to share images, diagnostic reports, and related information across a group of care sites [163].
Cross-Enterprise Sharing of Scanned Documents (XDS-SD)
An IHE integration profile that associates structured, healthcare metadata with non-healthcare-specific document formats to maintain the integrity of the patient health record as managed by the source system [164].
CSIDQ
A complete set of images of diagnostic quality [19].
Diagnostically Acceptable Image Compression (DAIC)
The use of lossy compression schemes and parameters for which it has been determined that for a particular type of image and a particular family of diagnostics tasks, compression does not adversely affect performance [114].
Digital Imaging and Communications in Medicine (DICOM®)
The standard for the communication and management of medical imaging information and related data [165].
DICOMweb™
A term applied to the family of RESTful DICOM services defined for sending, retrieving, and querying for medical images and related information [166].
DNG
Adobe Digital Negative Format, a non-proprietary file format for storing camera raw files that can be used by a wide range of hardware and software vendors [167].
EHR
An Electronic Healthcare Record is an electronic version of a patient’s medical history that is maintained by the provider over time, and may include all of the key administrative clinical data relevant to that persons care under a particular provider, including demographics, progress notes, problems, medications, vital signs, past medical history, immunizations, laboratory data, and radiology reports [168].
EMPI
An Enterprise Master Patient Index is a database that is used across a healthcare organization to maintain consistent, accurate, and current demographic and essential medical data on the patients seen and managed within its various departments [169].
EMR
An Electronic Medical Record is a digital version of a paper chart that contains all of a patient’s medical history from one practice; contains the standard medical and clinical data gathered in one provider’s office [170].
Encounter-Based Workflow
Images are acquired during a clinic visit or procedure when image content acquisition is not considered the purpose of the visit [5].
Enterprise Image Repository (EIR)
A standards-based DICOM and non-DICOM clinical image and video storage repository, with an index of the image and meta-information content, which is modality, modality vendor, specialty and service line, and viewer agnostic (adapted from [3]).
Enterprise Imaging
A set of strategies, initiatives, and workflows implemented across a healthcare enterprise to consistently and optimally capture, index, manage, store, distribute, view, exchange, and analyze all clinical imaging and multimedia content to enhance the electronic health record [3].
Enterprise Imaging Platform (EIP)
A standards-based, enterprise infrastructure to support departmental imaging workflows, which includes modality work list services, image archival, index, enterprise viewer application viewing within or outside the EHR, query and retrieval of imaging content from most departments, as well as image exchange capabilities (adapted from [3]).
FHIR®
A set of Resources that represent granular clinical concepts. Designed for the web; the resources are based on simple XML or JSON structures, with an http-based RESTful protocol where each resource has predictable URL. Where possible, open internet standards are used for data representation [171].
Imaging Study
See Study.
Imaging Object Change Management (IOCM)
An IHE integration profile that specifies how one actor communicates local changes applied on existing imaging objects to other actors that manage copies of the modified imaging objects in their own local systems. The supported changes include (1) object rejection due to quality or patient safety reasons, (2) correction of incorrect modality work list entry selection, and (3) expiration of objects due to data retention requirements. It defines how changes are captured and how to communicate these changes [146].
Import Reconciliation Workflow (IRWF)
An IHE integration profile that manages importing images from CDs, hardcopy, etc. and reconciling identifiers to match local values [17].
Interoperability
The ability of two or more systems or components to exchange information and to use the information that has been exchanged [172].
Metadata
Data that describes other data [173]. In the context of imaging, it includes data that describes the pixel data (e.g., rows, columns) and data that describes the acquisition process (e.g., device, camera settings, date and time, location). In the context of medical imaging, it includes data that describes the patient (e.g., name, ID), workflow context (e.g., accession number), and clinical context (e.g., anatomy, functional conditions, observations, diagnosis).
Order-Based Workflow
Images are acquired as a result of an order placed in the managing information system [5].
Patient Demographics Query (PDQ)
An IHE integration profile lets applications query a central patient information server and retrieve a patient’s demographic and visit information [105].
Patient Identifier Cross-Referencing (PIX)
An IHE integration profile that supports the cross-referencing of patient identifiers from multiple Patient Identifier Domains by transmitting patient identity information from an identity source to the Patient Identifier Cross-reference Manager and providing the ability to access the list(s) of cross-referenced patient identifiers either via a query/response or via an update notification [174].
Radiology Information System (RIS)
The core system for the electronic management of imaging departments. The major functions of the RIS can include patient scheduling, resource management, examination performance tracking, examination interpretation, results distribution, and procedure billing [175].
Study
A collection of one or more series of medical images, presentation states, and/or SR documents that are logically related for the purpose of diagnosing a patient. A study may include composite instances that are created by a single modality, multiple modalities or by multiple devices of the same Modality [176].
Vendor Neutral Archive (VNA)
A medical imaging technology in which images and documents (and potentially any file of clinical relevance) are stored (archived) in a standard format with a standard interface, such that they can be accessed in a vendor-neutral manner by other systems [177].
Visible Light (VL) Imaging
Acquisition of images that are acquired by means of a camera or other sensors that are sensitive to visible or near-visible light [178].
Literature
1.
2.
go back to reference Roth CJ, Lannum LM, Dennison DK, Towbin AJ: The current state & path forward for enterprise image viewing: HIMSS-SIIM collaborative white paper. J Digit Imag in press Roth CJ, Lannum LM, Dennison DK, Towbin AJ: The current state & path forward for enterprise image viewing: HIMSS-SIIM collaborative white paper. J Digit Imag in press
3.
go back to reference Roth CJ, Lannum LM, Persons KR: A foundation for enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imag 1–9, 2016. doi:10.1007/s10278-016-9882-0. Accessed 2016/06/08 Roth CJ, Lannum LM, Persons KR: A foundation for enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imag 1–9, 2016. doi:10.​1007/​s10278-016-9882-0. Accessed 2016/06/08
4.
go back to reference Vreeland AJ, Bishop M, Brown D, et al.: Considerations for exchanging and sharing medical images for improved collaboration and patient care: HIMSS-SIIM collaborative white paper. J Digit Imag in press. Vreeland AJ, Bishop M, Brown D, et al.: Considerations for exchanging and sharing medical images for improved collaboration and patient care: HIMSS-SIIM collaborative white paper. J Digit Imag in press.
5.
go back to reference Cram D, Roth CJ, Towbin AJ: Orders- versus encounters-based image capture: implications pre- and post-procedure workflow, technical and build capabilities, resulting, analytics and revenue capture: HIMSS-SIIM collaborative white paper. J Digit Imag 1–8, 2016. doi:10.1007/s10278-016-9888-7. Accessed 2016/07/25 Cram D, Roth CJ, Towbin AJ: Orders- versus encounters-based image capture: implications pre- and post-procedure workflow, technical and build capabilities, resulting, analytics and revenue capture: HIMSS-SIIM collaborative white paper. J Digit Imag 1–8, 2016. doi:10.​1007/​s10278-016-9888-7. Accessed 2016/07/25
6.
go back to reference Towbin AJ, Roth CJ, Bronkalla M, Cram D: Workflow challenges of enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imag in press. Towbin AJ, Roth CJ, Bronkalla M, Cram D: Workflow challenges of enterprise imaging: HIMSS-SIIM collaborative white paper. J Digit Imag in press.
11.
go back to reference Silberzweig JE, Khorsandi AS. Use of a Radiology Picture Archiving and Communication System to Catalogue Photographic Images. In: Kumar S, Krupinski EA, editors. Teleradiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 65–70. doi:10.1007/978-3-540-78871-3_6. Accessed 2016/06/02 Silberzweig JE, Khorsandi AS. Use of a Radiology Picture Archiving and Communication System to Catalogue Photographic Images. In: Kumar S, Krupinski EA, editors. Teleradiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 65–70. doi:10.​1007/​978-3-540-78871-3_​6. Accessed 2016/06/02
14.
go back to reference Lindsköld L, Wintell M, Lundberg N: Interoperability in healthcare: major challenges in the creation of the enterprise environment. In: Proc SPIE Medical Imaging 2009: Advanced PACS-based Imaging Informatics and Therapeutic Applications. 2009. p. 72640C–72640C–12. doi:10.1117/12.811493. Accessed 2017/07/27 Lindsköld L, Wintell M, Lundberg N: Interoperability in healthcare: major challenges in the creation of the enterprise environment. In: Proc SPIE Medical Imaging 2009: Advanced PACS-based Imaging Informatics and Therapeutic Applications. 2009. p. 72640C–72640C–12. doi:10.​1117/​12.​811493. Accessed 2017/07/27
15.
go back to reference Dayhoff RE, Maloney DL: Providing image management and communication functionality as an integral part of an existing hospital information system. In Proc. SPIE 1234, Medical Imaging IV: PACS Systems Design and Evaluation. 1990. p. 302–12. doi:10.1117/12.19054. Accessed 2016/06/02 Dayhoff RE, Maloney DL: Providing image management and communication functionality as an integral part of an existing hospital information system. In Proc. SPIE 1234, Medical Imaging IV: PACS Systems Design and Evaluation. 1990. p. 302–12. doi:10.​1117/​12.​19054. Accessed 2016/06/02
16.
go back to reference Dayhoff RE: A multidepartmental hospital imaging system: implications for the electronic medical record. Image Management and Communication in Patient Care, IMAC 93 83–6, 1993. doi:10.1109/IMAC.1993.665436. Accessed 2016/06/02 Dayhoff RE: A multidepartmental hospital imaging system: implications for the electronic medical record. Image Management and Communication in Patient Care, IMAC 93 83–6, 1993. doi:10.​1109/​IMAC.​1993.​665436. Accessed 2016/06/02
20.
go back to reference American Medical Association. Report of the Board of Trustees—Cost and Benefit Analysis for Electronic Health Record Implementation, Understanding the Pitfalls of EHRs and Providing Strategies for Success—D-455.994 Standardizing Portable Medical Imaging Formats to Enhance Safe, Timely, Efficient Care. 2013. Available from: http://www.dclunie.com/documents/a13-bot-24.pdf. Accessed 2016/06/11 American Medical Association. Report of the Board of Trustees—Cost and Benefit Analysis for Electronic Health Record Implementation, Understanding the Pitfalls of EHRs and Providing Strategies for Success—D-455.994 Standardizing Portable Medical Imaging Formats to Enhance Safe, Timely, Efficient Care. 2013. Available from: http://​www.​dclunie.​com/​documents/​a13-bot-24.​pdf. Accessed 2016/06/11
23.
go back to reference Badano A, Revie C, Casertano A, Cheng W-C, Green P, Kimpe T, et al.: Consistency and standardization of color in medical imaging: a consensus report. J Digit Imag 1–12, 2014. doi:10.1007/s10278-014-9721-0. Accessed 2016/07/19 Badano A, Revie C, Casertano A, Cheng W-C, Green P, Kimpe T, et al.: Consistency and standardization of color in medical imaging: a consensus report. J Digit Imag 1–12, 2014. doi:10.​1007/​s10278-014-9721-0. Accessed 2016/07/19
24.
go back to reference Eastman Kodak Company: Professional, commercial and industrial markets division. Clinical photography: a Kodak medical publication for professional use only. Eastman Kodak Company; 1972. 118 p Eastman Kodak Company: Professional, commercial and industrial markets division. Clinical photography: a Kodak medical publication for professional use only. Eastman Kodak Company; 1972. 118 p
39.
go back to reference Enning CJW, Siersema PD, van Blankenstein M, van Boven G-J, van Gennip EM: Evaluation of a multimedia information system for endoscopy. In: Proc SPIE Medical Imaging 1996: PACS Design and Evaluation: Engineering and Clinical Issues. 1996. p. 205–13. doi:10.1117/12.239249. Accessed 2016/07/21 Enning CJW, Siersema PD, van Blankenstein M, van Boven G-J, van Gennip EM: Evaluation of a multimedia information system for endoscopy. In: Proc SPIE Medical Imaging 1996: PACS Design and Evaluation: Engineering and Clinical Issues. 1996. p. 205–13. doi:10.​1117/​12.​239249. Accessed 2016/07/21
40.
go back to reference van Poppel BM, de Baat L, van Blankenstein M, van Boven G-J, van der Muelen J, Ottes FP: Endoscopy PACS integrated with the HIS. In: Proc SPIE Medical Imaging 1996: PACS Design and Evaluation: Engineering and Clinical Issues. 1996. p. 483–9. doi:10.1117/12.239283. Accessed 2016/07/21 van Poppel BM, de Baat L, van Blankenstein M, van Boven G-J, van der Muelen J, Ottes FP: Endoscopy PACS integrated with the HIS. In: Proc SPIE Medical Imaging 1996: PACS Design and Evaluation: Engineering and Clinical Issues. 1996. p. 483–9. doi:10.​1117/​12.​239283. Accessed 2016/07/21
43.
go back to reference Stanek SR, Tavanapong W, Wong JS, Oh J, de Groen PC: Automatic real-time capture and segmentation of endoscopy video. In: Proc SPIE Medical Imaging 2008: PACS and Imaging Informatics. 2008. p. 69190X–69190X–10. doi:10.1117/12.770930. Accessed 2017/07/21 Stanek SR, Tavanapong W, Wong JS, Oh J, de Groen PC: Automatic real-time capture and segmentation of endoscopy video. In: Proc SPIE Medical Imaging 2008: PACS and Imaging Informatics. 2008. p. 69190X–69190X–10. doi:10.​1117/​12.​770930. Accessed 2017/07/21
44.
go back to reference Chen Y, Yasen W, Lee J, Lee D, Kim Y: Developing assessment system for wireless capsule endoscopy videos based on event detection. In: Proc SPIE Medical Imaging 2009: Computer-Aided Diagnosis. 2009. p. 72601G–72601G–11. doi:10.1117/12.811453. Accessed 2016/07/21 Chen Y, Yasen W, Lee J, Lee D, Kim Y: Developing assessment system for wireless capsule endoscopy videos based on event detection. In: Proc SPIE Medical Imaging 2009: Computer-Aided Diagnosis. 2009. p. 72601G–72601G–11. doi:10.​1117/​12.​811453. Accessed 2016/07/21
45.
go back to reference Hwang S, Celebi ME: Multilevel wireless capsule endoscopy video segmentation. In: Proc SPIE Medical Imaging 2010: Image Processing. 2010. p. 76234D–76234D–9. doi:10.1117/12.844125. Accessed 2016/07/22 Hwang S, Celebi ME: Multilevel wireless capsule endoscopy video segmentation. In: Proc SPIE Medical Imaging 2010: Image Processing. 2010. p. 76234D–76234D–9. doi:10.​1117/​12.​844125. Accessed 2016/07/22
46.
47.
go back to reference Panda A, Sharma S, Jana M, Arora A, Sharma SK: Ophthalmic manifestations of systemic diseases—part 2: metabolic, infections, granulomatoses, demyelination, and skeletal dysplasias. Curr Probl Diagn Radiol 43(5):242–253, 2014. doi:10.1067/j.cpradiol.2014.02.003. Accessed 2016/07/26CrossRefPubMed Panda A, Sharma S, Jana M, Arora A, Sharma SK: Ophthalmic manifestations of systemic diseases—part 2: metabolic, infections, granulomatoses, demyelination, and skeletal dysplasias. Curr Probl Diagn Radiol 43(5):242–253, 2014. doi:10.​1067/​j.​cpradiol.​2014.​02.​003. Accessed 2016/07/26CrossRefPubMed
48.
go back to reference Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, et al: Fundus photography in the 21st century—a review of recent technological advances and their implications for worldwide healthcare. Telemedicine and e-Health 22(3):198–208, 2015. doi:10.1089/tmj.2015.0068. Accessed 2017/07/19CrossRefPubMed Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, et al: Fundus photography in the 21st century—a review of recent technological advances and their implications for worldwide healthcare. Telemedicine and e-Health 22(3):198–208, 2015. doi:10.​1089/​tmj.​2015.​0068. Accessed 2017/07/19CrossRefPubMed
53.
go back to reference Kuzmak PM, Dayhoff RE. Operational experience with DICOM for the clinical specialties in the healthcare enterprise. In: Proc SPIE Medical Imaging 2004: PACS and Imaging Informatics. 2004. p. 69–78. doi:10.1117/12.539855. Accessed 2016/06/02. Kuzmak PM, Dayhoff RE. Operational experience with DICOM for the clinical specialties in the healthcare enterprise. In: Proc SPIE Medical Imaging 2004: PACS and Imaging Informatics. 2004. p. 69–78. doi:10.​1117/​12.​539855. Accessed 2016/06/02.
57.
69.
go back to reference Pantanowitz L, Dickinson K, Evans A, Hassell L, Henricks W, Lennerz J, et al.: American Telemedicine Association clinical guidelines for telepathology. J Pathol Inform. 2014;5(39). doi:10.4103/2153-3539.143329. Accessed 2016/06/03 Pantanowitz L, Dickinson K, Evans A, Hassell L, Henricks W, Lennerz J, et al.: American Telemedicine Association clinical guidelines for telepathology. J Pathol Inform. 2014;5(39). doi:10.​4103/​2153-3539.​143329. Accessed 2016/06/03
70.
go back to reference Pantanowitz L, Farahani N, Parwani A: Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int 2015(7):23–33, 2015. doi:10.2147/PLMI.S59826. Accessed 2016/06/02CrossRef Pantanowitz L, Farahani N, Parwani A: Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int 2015(7):23–33, 2015. doi:10.​2147/​PLMI.​S59826. Accessed 2016/06/02CrossRef
72.
go back to reference Parwani A, Hassell L, Glassy E, Pantanowitz L. Regulatory barriers surrounding the use of whole slide imaging in the United States of America. J Pathol Inform 5(38), 2014. doi:10.4103/2153-3539.143325. Accessed 2016/06/02 Parwani A, Hassell L, Glassy E, Pantanowitz L. Regulatory barriers surrounding the use of whole slide imaging in the United States of America. J Pathol Inform 5(38), 2014. doi:10.​4103/​2153-3539.​143325. Accessed 2016/06/02
82.
90.
go back to reference Kurc T, Qi X, Wang D, Wang F, Teodoro G, Cooper L, et al: Scalable analysis of Big pathology image data cohorts using efficient methods and high-performance computing strategies. BMC Bioinformatics 16(1):1–21, 2015. doi:10.1186/s12859-015-0831-6. Accessed 2016/06/02CrossRef Kurc T, Qi X, Wang D, Wang F, Teodoro G, Cooper L, et al: Scalable analysis of Big pathology image data cohorts using efficient methods and high-performance computing strategies. BMC Bioinformatics 16(1):1–21, 2015. doi:10.​1186/​s12859-015-0831-6. Accessed 2016/06/02CrossRef
91.
go back to reference Bidgood WD, Horii SC: Modular extension of the ACR-NEMA DICOM standard to support new diagnostic imaging modalities and services. J Digit Imag 9(2):67–77, 1996. doi:10.1007/BF03168859. Accessed 2016/07/19CrossRef Bidgood WD, Horii SC: Modular extension of the ACR-NEMA DICOM standard to support new diagnostic imaging modalities and services. J Digit Imag 9(2):67–77, 1996. doi:10.​1007/​BF03168859. Accessed 2016/07/19CrossRef
92.
go back to reference Kuzmak PM, Dayhoff RE. Extending DICOM imaging to new clinical specialties in the healthcare enterprise. In: Proc SPIE Medical Imaging 2002: PACS and Integrated Medical Information Systems: Design and Evaluation. 2002. p. 233–42. doi:10.1117/12.467012. Accessed 2016/06/02 Kuzmak PM, Dayhoff RE. Extending DICOM imaging to new clinical specialties in the healthcare enterprise. In: Proc SPIE Medical Imaging 2002: PACS and Integrated Medical Information Systems: Design and Evaluation. 2002. p. 233–42. doi:10.​1117/​12.​467012. Accessed 2016/06/02
96.
go back to reference Bidgood Jr, WD, Korman LY, Golichowski AM, Hildebrand PL, Mori AR, Bray B, et al: Controlled terminology for clinically-relevant indexing and selective retrieval of biomedical images. Int J Digit Libr 1(3):278–287, 1997. doi:10.1007/s007990050022. Accessed 2016/06/02CrossRef Bidgood Jr, WD, Korman LY, Golichowski AM, Hildebrand PL, Mori AR, Bray B, et al: Controlled terminology for clinically-relevant indexing and selective retrieval of biomedical images. Int J Digit Libr 1(3):278–287, 1997. doi:10.​1007/​s007990050022. Accessed 2016/06/02CrossRef
99.
go back to reference Kuzmak PM, Dayhoff RE: Role of HIS/RIS DICOM interfaces in the integration of imaging into the Department of Veterans Affairs healthcare enterprise. In: Proc SPIE Medical Imaging 1998: PACS Design and Evaluation: Engineering and Clinical Issues. 1998. p. 440–50. doi:10.1117/12.319799. Accessed 2016/06/07 Kuzmak PM, Dayhoff RE: Role of HIS/RIS DICOM interfaces in the integration of imaging into the Department of Veterans Affairs healthcare enterprise. In: Proc SPIE Medical Imaging 1998: PACS Design and Evaluation: Engineering and Clinical Issues. 1998. p. 440–50. doi:10.​1117/​12.​319799. Accessed 2016/06/07
102.
go back to reference Siegel EL, Reiner BI, Protopapas Z, Pomerantz SM, Kuzmak PM: Analysis of the clinical impact of a DICOM HIS/RIS to modality interface and recommendations for improvement. In: Proc SPIE Medical Imaging 1997: PACS Design and Evaluation: Engineering and Clinical Issues. 1997. p. 146–9. doi:10.1117/12.274564. Accessed 2016/06/15 Siegel EL, Reiner BI, Protopapas Z, Pomerantz SM, Kuzmak PM: Analysis of the clinical impact of a DICOM HIS/RIS to modality interface and recommendations for improvement. In: Proc SPIE Medical Imaging 1997: PACS Design and Evaluation: Engineering and Clinical Issues. 1997. p. 146–9. doi:10.​1117/​12.​274564. Accessed 2016/06/15
110.
go back to reference Clunie DA: Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches. In: Proc SPIE Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues. 2000. p. 74–84. doi:10.1117/12.386389. Accessed 2016/06/11 Clunie DA: Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches. In: Proc SPIE Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues. 2000. p. 74–84. doi:10.​1117/​12.​386389. Accessed 2016/06/11
111.
go back to reference Penedo M, Lado MJ, Tahoces PG, Souto M, Vidal JJ: Effects of JPEG2000 data compression on an automated system for detecting clustered microcalcifications in digital mammograms. IEEE Trans Inf Technol Biomed 10(2):354–361, 2006. doi:10.1109/TITB.2005.864381. Accessed 2016/06/11CrossRefPubMed Penedo M, Lado MJ, Tahoces PG, Souto M, Vidal JJ: Effects of JPEG2000 data compression on an automated system for detecting clustered microcalcifications in digital mammograms. IEEE Trans Inf Technol Biomed 10(2):354–361, 2006. doi:10.​1109/​TITB.​2005.​864381. Accessed 2016/06/11CrossRefPubMed
112.
go back to reference Falcón-Ruiz A, Paz-Viera J, Sahli H: Estimating Quality Bounds of JPEG 2000 Compressed Leukocytes Images. In: Martínez-Trinidad J, Carrasco-Ochoa J, Kittler J, editors. Advances in Pattern Recognition: Second Mexican Conference on Pattern Recognition, MCPR 2010, Puebla, Mexico, September 27–29, 2010 Proceedings. Springer Berlin Heidelberg; 2010. p. 107–14. (Lecture Notes in Computer Science; vol. 6256). doi:10.1007/978-3-642-15992-3_12. Accessed 2016/06/11 Falcón-Ruiz A, Paz-Viera J, Sahli H: Estimating Quality Bounds of JPEG 2000 Compressed Leukocytes Images. In: Martínez-Trinidad J, Carrasco-Ochoa J, Kittler J, editors. Advances in Pattern Recognition: Second Mexican Conference on Pattern Recognition, MCPR 2010, Puebla, Mexico, September 27–29, 2010 Proceedings. Springer Berlin Heidelberg; 2010. p. 107–14. (Lecture Notes in Computer Science; vol. 6256). doi:10.​1007/​978-3-642-15992-3_​12. Accessed 2016/06/11
113.
go back to reference Pauli TW, Gangaputra S, Hubbard LD, Thayer DW, Chandler CS, Peng Q, et al: Effect of image compression and resolution on retinal vascular caliber. Invest Ophthalmol Vis Sci 53(9):5117–5123, 2012. doi:10.1167/iovs.12-9643. Accessed 2016/06/11CrossRefPubMed Pauli TW, Gangaputra S, Hubbard LD, Thayer DW, Chandler CS, Peng Q, et al: Effect of image compression and resolution on retinal vascular caliber. Invest Ophthalmol Vis Sci 53(9):5117–5123, 2012. doi:10.​1167/​iovs.​12-9643. Accessed 2016/06/11CrossRefPubMed
114.
go back to reference European Society of Radiology: Usability of irreversible image compression in radiological imaging—a position paper by the European Society of Radiology (ESR). Insights Imaging 2(2):103–115, 2011. doi:10.1007/s13244-011-0071-x. Accessed 2016/06/11CrossRef European Society of Radiology: Usability of irreversible image compression in radiological imaging—a position paper by the European Society of Radiology (ESR). Insights Imaging 2(2):103–115, 2011. doi:10.​1007/​s13244-011-0071-x. Accessed 2016/06/11CrossRef
116.
go back to reference Norweck JT, Seibert JA, Andriole KP, Clunie DA, Curran BH, Flynn MJ, et al: ACR–AAPM–SIIM technical standard for electronic practice of medical imaging. J Digit Imag 26(1):38–52, 2012. doi:10.1007/s10278-012-9522-2. Accessed 2016/06/11CrossRef Norweck JT, Seibert JA, Andriole KP, Clunie DA, Curran BH, Flynn MJ, et al: ACR–AAPM–SIIM technical standard for electronic practice of medical imaging. J Digit Imag 26(1):38–52, 2012. doi:10.​1007/​s10278-012-9522-2. Accessed 2016/06/11CrossRef
119.
go back to reference Loose R, Braunschweig R, Kotter E, Mildenberger P, Simmler R, Wucherer M: Kompression digitaler Bilddaten in der Radiologie – Ergebnisse einer Konsensuskonferenz. Fortschr Röntgenstr 181(1):32–37, 2009. doi:10.1055/s-2008-1027847. Accessed 2016/06/11CrossRef Loose R, Braunschweig R, Kotter E, Mildenberger P, Simmler R, Wucherer M: Kompression digitaler Bilddaten in der Radiologie – Ergebnisse einer Konsensuskonferenz. Fortschr Röntgenstr 181(1):32–37, 2009. doi:10.​1055/​s-2008-1027847. Accessed 2016/06/11CrossRef
121.
go back to reference Karson TH, Zepp RC, Chandra S, Morehead A, Thomas JD: Digital storage of echocardiograms offers superior image quality to analog storage, even with 20:1 digital compression: results of the Digital Echo Record Access Study. J Am Soc Echocardiogr 9(6):769–778, 1996. doi:10.1016/S0894-7317(96)90467-8. Accessed 2016/06/11CrossRefPubMed Karson TH, Zepp RC, Chandra S, Morehead A, Thomas JD: Digital storage of echocardiograms offers superior image quality to analog storage, even with 20:1 digital compression: results of the Digital Echo Record Access Study. J Am Soc Echocardiogr 9(6):769–778, 1996. doi:10.​1016/​S0894-7317(96)90467-8. Accessed 2016/06/11CrossRefPubMed
126.
go back to reference Japan Electronics and Information Technology Industries Association. Technical Standardization Committee on AV & IT Storage Systems and Equipment. JEITA CP-3451. Exchangeable Image File Format for Digital Still Cameras. Version 2.2. 2002/04. Available from: http://www.exif.org/Exif2-2.PDF. Accessed 2016/07/13 Japan Electronics and Information Technology Industries Association. Technical Standardization Committee on AV & IT Storage Systems and Equipment. JEITA CP-3451. Exchangeable Image File Format for Digital Still Cameras. Version 2.2. 2002/04. Available from: http://​www.​exif.​org/​Exif2-2.​PDF. Accessed 2016/07/13
140.
go back to reference Bialecki B, Park J, Tilkin M. Using Object Storage Technology vs Vendor Neutral Archives for an Image Data Repository Infrastructure. J Digit Imag. 2016;1–6. doi:10.1007/s10278-016-9867-z. Accessed 2016/06/08 Bialecki B, Park J, Tilkin M. Using Object Storage Technology vs Vendor Neutral Archives for an Image Data Repository Infrastructure. J Digit Imag. 2016;1–6. doi:10.​1007/​s10278-016-9867-z. Accessed 2016/06/08
148.
go back to reference van Ooijen PMA, Aryanto K, Broekema A, Horii S. DICOM data migration for PACS transition: procedure and pitfalls. Int J CARS. 2014;1–10. doi:10.1007/s11548-014-1123-8. Accessed 2016/07/25 van Ooijen PMA, Aryanto K, Broekema A, Horii S. DICOM data migration for PACS transition: procedure and pitfalls. Int J CARS. 2014;1–10. doi:10.​1007/​s11548-014-1123-8. Accessed 2016/07/25
149.
go back to reference Ratib OM, Liu BJ, Kho HT, Tao W, Wang C, McCoy JM: Multigeneration data migration from legacy systems. In: Proc SPIE Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation. 2003. p. 285–8. doi:10.1117/12.480465. Accessed 2016/07/25 Ratib OM, Liu BJ, Kho HT, Tao W, Wang C, McCoy JM: Multigeneration data migration from legacy systems. In: Proc SPIE Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation. 2003. p. 285–8. doi:10.​1117/​12.​480465. Accessed 2016/07/25
150.
go back to reference Behlen FM, Sayre RE, Weldy JB, Michael JS: Permanent records: experience with data migration in radiology information system and picture archiving and communication system replacement. J Digit Imag 13(1 Supplement):171–174, 2000. doi:10.1007/BF03167653. Accessed 2016/07/25CrossRef Behlen FM, Sayre RE, Weldy JB, Michael JS: Permanent records: experience with data migration in radiology information system and picture archiving and communication system replacement. J Digit Imag 13(1 Supplement):171–174, 2000. doi:10.​1007/​BF03167653. Accessed 2016/07/25CrossRef
151.
go back to reference Chen JJ, Siddiqui KM, Fort L, Moffitt R, Juluru K, Kim W, et al.: Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security. In: Proc SPIE Medical Imaging 2007: PACS and Imaging Informatics. 2007. p. 65161B–65161B–8. doi:10.1117/12.717850. Accessed 2016/07/20 Chen JJ, Siddiqui KM, Fort L, Moffitt R, Juluru K, Kim W, et al.: Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security. In: Proc SPIE Medical Imaging 2007: PACS and Imaging Informatics. 2007. p. 65161B–65161B–8. doi:10.​1117/​12.​717850. Accessed 2016/07/20
152.
go back to reference Prior FW, Brunsden B, Hildebolt C, Nolan TS, Pringle M, Vaishnavi SN, et al: Facial recognition from volume-rendered magnetic resonance imaging data. IEEE Trans Inf Technol Biomed 13(1):5–9, 2009. doi:10.1109/TITB.2008.2003335. Accessed 2016/07/19CrossRefPubMed Prior FW, Brunsden B, Hildebolt C, Nolan TS, Pringle M, Vaishnavi SN, et al: Facial recognition from volume-rendered magnetic resonance imaging data. IEEE Trans Inf Technol Biomed 13(1):5–9, 2009. doi:10.​1109/​TITB.​2008.​2003335. Accessed 2016/07/19CrossRefPubMed
153.
go back to reference Mazura JC, Juluru K, Chen JJ, Morgan TA, John M, Siegel EL: Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security. J Digit Imag 25(3):347–351, 2012. doi:10.1007/s10278-011-9429-3. Accessed 2016/07/19CrossRef Mazura JC, Juluru K, Chen JJ, Morgan TA, John M, Siegel EL: Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security. J Digit Imag 25(3):347–351, 2012. doi:10.​1007/​s10278-011-9429-3. Accessed 2016/07/19CrossRef
157.
go back to reference Freymann J, Kirby J, Perry J, Clunie D, Jaffe CC: Image data sharing for biomedical research—meeting HIPAA requirements for de-identification. J Digit Imag 25(1):14–24, 2012. doi:10.1007/s10278-011-9422-x. Accessed 2016/07/19CrossRef Freymann J, Kirby J, Perry J, Clunie D, Jaffe CC: Image data sharing for biomedical research—meeting HIPAA requirements for de-identification. J Digit Imag 25(1):14–24, 2012. doi:10.​1007/​s10278-011-9422-x. Accessed 2016/07/19CrossRef
Metadata
Title
Technical Challenges of Enterprise Imaging: HIMSS-SIIM Collaborative White Paper
Authors
David A. Clunie
Don K. Dennison
Dawn Cram
Kenneth R. Persons
Mark D. Bronkalla
Henri “Rik” Primo
Publication date
01-10-2016
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 5/2016
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-016-9899-4

Other articles of this Issue 5/2016

Journal of Digital Imaging 5/2016 Go to the issue