Skip to main content
Top
Published in: Odontology 2/2022

01-04-2022 | Injectable Filler | Original Article

The effect of functionalized titanium dioxide nanotube reinforcement on the water sorption and water solubility properties of flowable bulk-fill composite resins

Authors: Mustafa Kutay Karaca, Ozge Kam Hepdeniz, Banu Esencan Turkaslan, Osman Gurdal

Published in: Odontology | Issue 2/2022

Login to get access

Abstract

The aim of this study was to investigate the effects of titanium dioxide nanotube addition on the water sorption and water solubility values of different composite resins. Titanium dioxide nanotubes were synthesized from titanium dioxide powder in anatase form and in 13 nm diameter by hydrothermal process and then functionalized with methacrylic acid. Characterization of the nanotubes was performed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. A flowable composite resin (Filtek Ultimate Flowable) and four flowable bulk-fill composite resins (Filtek Bulk Fill Flowable, SDR Bulk Fill Flowable, Venus Bulk Fill, X-tra Base) were tested. Two groups of each composite resin were prepared: groups of the resins without nanotubes; groups of the resins reinforced with 1.0 wt% functionalized titanium dioxide nanotube. Sorption and solubility in water were assessed according to ISO 4049 standards after 1, 7, 14, 21 days immersion periods. Data were analyzed using Mann–Whitney U and Kruskal–Wallis H tests (p  <  0.05). Long cylindrical tubular structures with a diameter of 41.09–72.49 nm were observed in electron microscopy analysis. The band at 1636 cm − 1 showed the existence of the vinyl (C=C) bond of methacrylic acid coordinated to the nanotubes in Fourier transform infrared spectroscopy analysis. None of the materials tested in this study exceeded the maximum sorption and solubility values established by ISO. Regarding the water solubility, negative values were obtained. TiO2 nanotube reinforcement decreased the water sorption and solubility values significantly at different evaluation periods in all composite resins except for Venus (p < 0.05).
Literature
1.
go back to reference Liu Y, Tan Y, Lei T, Xiang Q, Han Y, Huang B. Effect of porous glass–ceramic fillers on mechanical properties of light-cured dental resin composites. Dent Mater. 2009;25:709–15.PubMedCrossRef Liu Y, Tan Y, Lei T, Xiang Q, Han Y, Huang B. Effect of porous glass–ceramic fillers on mechanical properties of light-cured dental resin composites. Dent Mater. 2009;25:709–15.PubMedCrossRef
2.
go back to reference Chandki R, Kala M, Kumar KN, Brigit B, Banthia P, Banthia R. ‘Nanodentistry’: exploring the beauty of miniature. J Clin Exp Dent. 2012;4:119–24.CrossRef Chandki R, Kala M, Kumar KN, Brigit B, Banthia P, Banthia R. ‘Nanodentistry’: exploring the beauty of miniature. J Clin Exp Dent. 2012;4:119–24.CrossRef
3.
go back to reference Dafar MO, Grol MW, Canham PB, Dixon SJ, Rizkalla AS. Reinforcement of flowable dental composites with titanium dioxide nanotubes. Dent Mater. 2016;32:817–26.PubMedCrossRef Dafar MO, Grol MW, Canham PB, Dixon SJ, Rizkalla AS. Reinforcement of flowable dental composites with titanium dioxide nanotubes. Dent Mater. 2016;32:817–26.PubMedCrossRef
4.
go back to reference Sun J, Forster AM, Johnson PM, Eidelman N, Quinn G, Schumacher G, Zhang X, Wu W. Improving performance of dental resins by adding titanium dioxide nanoparticles. Dent Mater. 2011;27:972–82.PubMedCrossRef Sun J, Forster AM, Johnson PM, Eidelman N, Quinn G, Schumacher G, Zhang X, Wu W. Improving performance of dental resins by adding titanium dioxide nanoparticles. Dent Mater. 2011;27:972–82.PubMedCrossRef
5.
go back to reference Zhao J, Xie D. Effect of nanoparticles on wear resistance and surface hardness of a dental glass-ionomer cement. J Compos Mater. 2009;43:2739–52.CrossRef Zhao J, Xie D. Effect of nanoparticles on wear resistance and surface hardness of a dental glass-ionomer cement. J Compos Mater. 2009;43:2739–52.CrossRef
6.
go back to reference Shirkavand S, Moslehifard E. Effect of TiO2 nanoparticles on tensile strength of dental acrylic resins. J Dent Res Dent Clin Dent Prospects. 2014;8:197–203.PubMedPubMedCentral Shirkavand S, Moslehifard E. Effect of TiO2 nanoparticles on tensile strength of dental acrylic resins. J Dent Res Dent Clin Dent Prospects. 2014;8:197–203.PubMedPubMedCentral
7.
go back to reference Reijnders L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab. 2009;94:873–6.CrossRef Reijnders L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab. 2009;94:873–6.CrossRef
8.
go back to reference Xu X, Wang Y, Liao S, Wen ZT, Fan Y. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res Part B Appl Biomater. 2012;100:1151–62.CrossRef Xu X, Wang Y, Liao S, Wen ZT, Fan Y. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res Part B Appl Biomater. 2012;100:1151–62.CrossRef
9.
go back to reference Yu B, Ahn JS, Lim JI, Lee YK. Influence of TiO2 nanoparticles on the optical properties of resin composites. Dent Mater. 2009;25:1142–7.PubMedCrossRef Yu B, Ahn JS, Lim JI, Lee YK. Influence of TiO2 nanoparticles on the optical properties of resin composites. Dent Mater. 2009;25:1142–7.PubMedCrossRef
10.
go back to reference Guimarães GMF, Bronze-Uhle ES, Lisboa-Filho PN, Fugolin APP, Borges AFS, Gonzaga CC, Pfeifer CS, Furuse AY. Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites. Dent Mater. 2020;36:1544–56.PubMedCrossRef Guimarães GMF, Bronze-Uhle ES, Lisboa-Filho PN, Fugolin APP, Borges AFS, Gonzaga CC, Pfeifer CS, Furuse AY. Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites. Dent Mater. 2020;36:1544–56.PubMedCrossRef
11.
go back to reference Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36:450–5.PubMedCrossRef Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36:450–5.PubMedCrossRef
12.
go back to reference Oliveira WF, Arruda IRS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2017;81:597–606.PubMedCrossRef Oliveira WF, Arruda IRS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2017;81:597–606.PubMedCrossRef
13.
go back to reference Abdulrazzaq Naji S, Behroozibakhsh M, Jafarzadeh Kashi TS, Eslami H, Masaeli R, Mahgoli H, Tahriri M, Ghavvami Lahiji M, Rakhshan V. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA). J Adv Prosthodont. 2018;10:113–21.PubMedPubMedCentralCrossRef Abdulrazzaq Naji S, Behroozibakhsh M, Jafarzadeh Kashi TS, Eslami H, Masaeli R, Mahgoli H, Tahriri M, Ghavvami Lahiji M, Rakhshan V. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA). J Adv Prosthodont. 2018;10:113–21.PubMedPubMedCentralCrossRef
14.
go back to reference Ramos-Tonello CM, Lisboa-Filho PN, Arruda LB, Tokuhara CK, Oliveira RC, Furuse AY, Rubo JH, Borges AFS. Titanium dioxide nanotubes addition to self-adhesive resin cement: effect on physical and biological properties. Dent Mater. 2017;33:866–75.PubMedCrossRef Ramos-Tonello CM, Lisboa-Filho PN, Arruda LB, Tokuhara CK, Oliveira RC, Furuse AY, Rubo JH, Borges AFS. Titanium dioxide nanotubes addition to self-adhesive resin cement: effect on physical and biological properties. Dent Mater. 2017;33:866–75.PubMedCrossRef
15.
go back to reference Khaled S, Miron RJ, Hamilton DW, Charpentier PA, Rizkalla AS. Reinforcement of resin based cement with titania nanotubes. Dent Mater. 2010;26:169–78.PubMedCrossRef Khaled S, Miron RJ, Hamilton DW, Charpentier PA, Rizkalla AS. Reinforcement of resin based cement with titania nanotubes. Dent Mater. 2010;26:169–78.PubMedCrossRef
16.
go back to reference Mirjalili A, Zamanian A, Hadav SMM. The effect of TiO2 nanotubes reinforcement on the mechanical properties and wear resistance of silica micro-filled dental composites. J Compos Mater. 2019;53:3217–28.CrossRef Mirjalili A, Zamanian A, Hadav SMM. The effect of TiO2 nanotubes reinforcement on the mechanical properties and wear resistance of silica micro-filled dental composites. J Compos Mater. 2019;53:3217–28.CrossRef
17.
go back to reference Lewandowska Ż, Piszczek P, Radtke A, Jędrzejewski T, Kozak W, Sadowska B. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J Mater Sci Mater Med. 2015;26:163.PubMedPubMedCentralCrossRef Lewandowska Ż, Piszczek P, Radtke A, Jędrzejewski T, Kozak W, Sadowska B. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J Mater Sci Mater Med. 2015;26:163.PubMedPubMedCentralCrossRef
18.
go back to reference Abbas G, Fleming G, Harrington E, Shortall A, Burke F. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent. 2003;31:437–44.PubMedCrossRef Abbas G, Fleming G, Harrington E, Shortall A, Burke F. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent. 2003;31:437–44.PubMedCrossRef
19.
go back to reference Moharam LM, El-Hoshy AZ, Abou-Elenein K. The effect of different insertion techniques on the depth of cure and vickers surface microhardness of two bulk-fill resin composite materials. J Clin Exp Dent. 2017;9:266–71. Moharam LM, El-Hoshy AZ, Abou-Elenein K. The effect of different insertion techniques on the depth of cure and vickers surface microhardness of two bulk-fill resin composite materials. J Clin Exp Dent. 2017;9:266–71.
20.
go back to reference Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, Petschelt A, Taschner M. Bulk-fill resin composites: polymerization properties and extended light curing. Dent Mater. 2015;31:293–301.PubMedCrossRef Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, Petschelt A, Taschner M. Bulk-fill resin composites: polymerization properties and extended light curing. Dent Mater. 2015;31:293–301.PubMedCrossRef
21.
go back to reference Haugen HJ, Marovic D, Par M, Thieu MKL, Reseland JE, Johnsen GF. Bulk Fill composites have similar performance to conventional dental composites. Int J Mol Sci. 2020;21:5136.PubMedCentralCrossRef Haugen HJ, Marovic D, Par M, Thieu MKL, Reseland JE, Johnsen GF. Bulk Fill composites have similar performance to conventional dental composites. Int J Mol Sci. 2020;21:5136.PubMedCentralCrossRef
22.
go back to reference Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent. 2013;38:618–25.PubMedCrossRef Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent. 2013;38:618–25.PubMedCrossRef
23.
go back to reference Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014;42:993–1000.PubMedCrossRef Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014;42:993–1000.PubMedCrossRef
24.
go back to reference Van Ende A, De Munck J, Lise DP, Van Meerbeek B. Bulk-fill composites: a review of the current literature. J Adhes Dent. 2017;19:95–109.PubMed Van Ende A, De Munck J, Lise DP, Van Meerbeek B. Bulk-fill composites: a review of the current literature. J Adhes Dent. 2017;19:95–109.PubMed
25.
go back to reference Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv Mater. 1999;11:1307–11.CrossRef Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv Mater. 1999;11:1307–11.CrossRef
26.
go back to reference Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.PubMedCrossRef Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.PubMedCrossRef
27.
go back to reference Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18.CrossRef Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18.CrossRef
28.
go back to reference Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Long-term sorption and solubility of bulk-fill and conventional resin composites in water and artificial saliva. J Dent. 2015;43:1511–8.PubMedCrossRef Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Long-term sorption and solubility of bulk-fill and conventional resin composites in water and artificial saliva. J Dent. 2015;43:1511–8.PubMedCrossRef
29.
go back to reference Berger SB, Palialol AR, Cavalli V, Giannini M. Characterization of water sorption, solubility and filler particles of light-cured composite resins. Braz Dent J. 2009;20:314–8.PubMedCrossRef Berger SB, Palialol AR, Cavalli V, Giannini M. Characterization of water sorption, solubility and filler particles of light-cured composite resins. Braz Dent J. 2009;20:314–8.PubMedCrossRef
30.
go back to reference Tekin TH, Figen AK, Atalı PY, Filiz BC, Pişkin MB. Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light. Mater Sci Eng C. 2017;7:436–45.CrossRef Tekin TH, Figen AK, Atalı PY, Filiz BC, Pişkin MB. Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light. Mater Sci Eng C. 2017;7:436–45.CrossRef
31.
go back to reference Xia X, Cai S, Hu J, Xie C. Water absorption characteristics of novel Cu/LDPE nanocomposite for use in intrauterine devices. J Biomed Mater Res B Appl Biomater. 2006;79:345–52.PubMedCrossRef Xia X, Cai S, Hu J, Xie C. Water absorption characteristics of novel Cu/LDPE nanocomposite for use in intrauterine devices. J Biomed Mater Res B Appl Biomater. 2006;79:345–52.PubMedCrossRef
32.
go back to reference Fan P, Edahl A, Leung R, Stanford J. Alternative interpretations of water sorption values of composite resins. J Dent Res. 1985;64:78–80.PubMedCrossRef Fan P, Edahl A, Leung R, Stanford J. Alternative interpretations of water sorption values of composite resins. J Dent Res. 1985;64:78–80.PubMedCrossRef
33.
34.
35.
go back to reference International Organization for Standardization. ISO 4049–2019: Dentistry: polymer-based restorative materials International Organization for Standardization. ISO 4049–2019: Dentistry: polymer-based restorative materials
36.
go back to reference Misilli T, Gönülol N. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU. Braz Oral Res. 2017;31:80.CrossRef Misilli T, Gönülol N. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU. Braz Oral Res. 2017;31:80.CrossRef
37.
go back to reference Øysæd H, Ruyter I. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986;65:1315–8.PubMedCrossRef Øysæd H, Ruyter I. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986;65:1315–8.PubMedCrossRef
38.
go back to reference Al-Towairqi W, Hamouda I. Effect of instrument lubricant on water sorption and solubility of incrementally applied nanofilled resin composite. J Nanotechnol Nanomed Nanobiotechnol. 2017;4:019. Al-Towairqi W, Hamouda I. Effect of instrument lubricant on water sorption and solubility of incrementally applied nanofilled resin composite. J Nanotechnol Nanomed Nanobiotechnol. 2017;4:019.
39.
go back to reference Fortin D, Vargas MA. The spectrum of composites: new techniques and materials. J Am Dent Assoc. 2000;131:26–30.CrossRef Fortin D, Vargas MA. The spectrum of composites: new techniques and materials. J Am Dent Assoc. 2000;131:26–30.CrossRef
40.
go back to reference Rahim TN, Mohamad D, Akil H, Rahman I. Water sorption characteristics of restorative dental composites immersed in acidic drinks. Dent Mater. 2012;28:63–70.CrossRef Rahim TN, Mohamad D, Akil H, Rahman I. Water sorption characteristics of restorative dental composites immersed in acidic drinks. Dent Mater. 2012;28:63–70.CrossRef
41.
go back to reference Venz S, Dickens B. NIR-spectroscopic investigation of water sorption characteristics of dental resins and composites. J Biomed Mater Res. 1991;25:1231–48.PubMedCrossRef Venz S, Dickens B. NIR-spectroscopic investigation of water sorption characteristics of dental resins and composites. J Biomed Mater Res. 1991;25:1231–48.PubMedCrossRef
42.
go back to reference Yap A, Lee C. Water sorption and solubility of resin-modified polyalkenoate cements. J Oral Rehabil. 1997;24:310–4.PubMedCrossRef Yap A, Lee C. Water sorption and solubility of resin-modified polyalkenoate cements. J Oral Rehabil. 1997;24:310–4.PubMedCrossRef
43.
go back to reference Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: a review of the current literature. J Prosthet Dent. 1998;80:280–301.PubMedCrossRef Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: a review of the current literature. J Prosthet Dent. 1998;80:280–301.PubMedCrossRef
44.
go back to reference Örtengren U, Wellendorf H, Karlsson S, Ruyter I. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil. 2001;28:1106–15.PubMedCrossRef Örtengren U, Wellendorf H, Karlsson S, Ruyter I. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil. 2001;28:1106–15.PubMedCrossRef
45.
go back to reference Lopes LG, Filho AVJ, de Souza JB, Rabelo D, Franco EB, de Freitas GC. Influence of pulse-delay curing on sorption and solubility of a composite resin. J Appl Oral Sci. 2009;17:27–31.PubMedPubMedCentralCrossRef Lopes LG, Filho AVJ, de Souza JB, Rabelo D, Franco EB, de Freitas GC. Influence of pulse-delay curing on sorption and solubility of a composite resin. J Appl Oral Sci. 2009;17:27–31.PubMedPubMedCentralCrossRef
46.
go back to reference Kahraman R. Effects of the aluminum filler content on moisture diffusion into epoxy adhesives in distilled water and sea water. J Appl Polym Sci. 2005;98:1165–71.CrossRef Kahraman R. Effects of the aluminum filler content on moisture diffusion into epoxy adhesives in distilled water and sea water. J Appl Polym Sci. 2005;98:1165–71.CrossRef
47.
go back to reference Park J, Ferracane J. Water aging reverses residual stresses in hydrophilic dental composites. J Dent Res. 2014;93:195–200.PubMedCrossRef Park J, Ferracane J. Water aging reverses residual stresses in hydrophilic dental composites. J Dent Res. 2014;93:195–200.PubMedCrossRef
48.
go back to reference Palin W, Fleming G, Burke F, Marquis P, Randall R. The influence of short and medium-term water immersion on the hydrolytic stability of novel low shrink dental composites. Dent Mater. 2005;21:852–63.PubMedCrossRef Palin W, Fleming G, Burke F, Marquis P, Randall R. The influence of short and medium-term water immersion on the hydrolytic stability of novel low shrink dental composites. Dent Mater. 2005;21:852–63.PubMedCrossRef
49.
go back to reference Kloosterboer JG. Network formation by chain crosslinking photopolymerization and its applications in electronics. In: Electronic Applications, Advances in Polymer Science. Berlin: Springer; 1988. pp. 1–61. Kloosterboer JG. Network formation by chain crosslinking photopolymerization and its applications in electronics. In: Electronic Applications, Advances in Polymer Science. Berlin: Springer; 1988. pp. 1–61.
50.
go back to reference Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials. 2003;24:655–65.PubMedCrossRef Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials. 2003;24:655–65.PubMedCrossRef
Metadata
Title
The effect of functionalized titanium dioxide nanotube reinforcement on the water sorption and water solubility properties of flowable bulk-fill composite resins
Authors
Mustafa Kutay Karaca
Ozge Kam Hepdeniz
Banu Esencan Turkaslan
Osman Gurdal
Publication date
01-04-2022
Publisher
Springer Singapore
Published in
Odontology / Issue 2/2022
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-021-00664-7

Other articles of this Issue 2/2022

Odontology 2/2022 Go to the issue