Skip to main content
Top
Published in: Odontology 4/2017

01-10-2017 | Original Article

Micro-computed tomography analysis of early stage bone healing using micro-porous titanium mesh for guided bone regeneration: preliminary experiment in a canine model

Authors: Yunia Dwi Rakhmatia, Yasunori Ayukawa, Yohei Jinno, Akihiro Furuhashi, Kiyoshi Koyano

Published in: Odontology | Issue 4/2017

Login to get access

Abstract

The aim of this study was to evaluate the amount of bone formation beneath a defect area after treatment with titanium mesh membranes with different thicknesses and pore sizes alone or in combination with bone graft to induce bone formation during the early stage of healing time. The mandibular premolars were extracted bilaterally from three adult beagle dogs, and 8-mm-diameter bone defects were created on the buccal site of the premolar regions. Hydroxyapatite bone graft substitute was applied in the defect site unilaterally, and other site was left empty. Then, a novel micro-porous mesh (50 μm in pore diameter) or commercially available macro-porous titanium mesh (1700 μm in pore diameter) was placed on the defect and secured with screws. After 4 weeks, the mandibles were harvested, imaged using micro-computed tomography, and prepared for histological and morphometric evaluation. Higher new bone volumes (mm3), percentage of new bone volumes in the total defect volumes (bone ratio: %), and new bone area (mm2) through morphometric evaluation were found on the novel membranes with 50-μm-diameter pores compared to the commercial titanium mesh. Moreover, experiment sites without bone graft were observed with higher new bone volume and bone ratio compared with sites with bone graft. However, bone mineral density of novel mesh was observed to be lower compared with other experimental sites. Under the experimental condition, the result of this study suggests that titanium meshes with 50-μm-diameter pores were effective for guided bone regeneration in the early stage of healing.
Literature
1.
go back to reference Sottosanti JS. Calcium sulfate: a valuable addition to the implant/bone regeneration complex. Dent Implantol Update. 1997;8:25–9.PubMed Sottosanti JS. Calcium sulfate: a valuable addition to the implant/bone regeneration complex. Dent Implantol Update. 1997;8:25–9.PubMed
2.
go back to reference Becker W, Becker B, Mellonig J. A prospective multicenter study evaluating periodontal regeneration for class II furcation invasions and infrabony defects after treatment with a bioabsorbable barrier membrane: 1-year results. J Periodontol. 1996;67:641–9.CrossRefPubMed Becker W, Becker B, Mellonig J. A prospective multicenter study evaluating periodontal regeneration for class II furcation invasions and infrabony defects after treatment with a bioabsorbable barrier membrane: 1-year results. J Periodontol. 1996;67:641–9.CrossRefPubMed
3.
go back to reference Zitzmann NU, Naef R, Scharer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997;12:844–52.PubMed Zitzmann NU, Naef R, Scharer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997;12:844–52.PubMed
4.
go back to reference Schopper CH, Goriwoda W, Moser D. Long-term results after guided bone regeneration with resorbable and microporous titanium membranes. J Oral Maxillofac Surg Clin North Am. 2001;13:449–58. Schopper CH, Goriwoda W, Moser D. Long-term results after guided bone regeneration with resorbable and microporous titanium membranes. J Oral Maxillofac Surg Clin North Am. 2001;13:449–58.
5.
go back to reference Scantlebury TV. 1982-1992: a decade of technology development for guided tissue regeneration. J Periodontol. 1993;64:1129–37.CrossRefPubMed Scantlebury TV. 1982-1992: a decade of technology development for guided tissue regeneration. J Periodontol. 1993;64:1129–37.CrossRefPubMed
6.
go back to reference Garg A. Barrier membranes–materials review, Part I of II. Dent Implantol Update. 2011;22:61–4.PubMed Garg A. Barrier membranes–materials review, Part I of II. Dent Implantol Update. 2011;22:61–4.PubMed
7.
go back to reference Roccuzzo M, Ramieri G, Spada MC, Bianchi SD, Berrone S. Vertical alveolar ridge augmentation by means of a titanium mesh and autogenous bone grafts. Clin Oral Implants Res. 2004;15:73–81.CrossRefPubMed Roccuzzo M, Ramieri G, Spada MC, Bianchi SD, Berrone S. Vertical alveolar ridge augmentation by means of a titanium mesh and autogenous bone grafts. Clin Oral Implants Res. 2004;15:73–81.CrossRefPubMed
8.
go back to reference Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57:3–14.CrossRefPubMed Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57:3–14.CrossRefPubMed
9.
go back to reference Heinze J. A space-maintaining resorbable membrane for guided tissue regeneration. Annual conference of the International Association of Dental Research, Honululu, 2004. Heinze J. A space-maintaining resorbable membrane for guided tissue regeneration. Annual conference of the International Association of Dental Research, Honululu, 2004.
10.
go back to reference Chvapil M, Holusa R, Kliment K, Stoll M. Some chemical and biological characteristics of a new collagen-polymer compound material. J Biomed Mater Res. 1969;3:315–32.CrossRefPubMed Chvapil M, Holusa R, Kliment K, Stoll M. Some chemical and biological characteristics of a new collagen-polymer compound material. J Biomed Mater Res. 1969;3:315–32.CrossRefPubMed
11.
go back to reference Taylor D, Smith F. Porous methyl methacrylate as an implant material. J Biomed Mater Res. 1972;6:467–79.CrossRefPubMed Taylor D, Smith F. Porous methyl methacrylate as an implant material. J Biomed Mater Res. 1972;6:467–79.CrossRefPubMed
12.
go back to reference Yannas IV. Tissue regeneration by use of collagen–glycosaminoglycan copolymers. Clin Mater. 1992;9:179–87.CrossRefPubMed Yannas IV. Tissue regeneration by use of collagen–glycosaminoglycan copolymers. Clin Mater. 1992;9:179–87.CrossRefPubMed
13.
go back to reference Zhang M. Biocompatible of materials. In: Shi D, Wang M, Zhang M, Clare A, Kasuga T, Liu Q, editors. Biomaterials and tissue engineering. Berlin: Springer; 2004. p. 83–103.CrossRef Zhang M. Biocompatible of materials. In: Shi D, Wang M, Zhang M, Clare A, Kasuga T, Liu Q, editors. Biomaterials and tissue engineering. Berlin: Springer; 2004. p. 83–103.CrossRef
14.
go back to reference Hämmerle CHF, Jung RE, Feloutzis A. A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol. 2002;29:226–31.CrossRefPubMed Hämmerle CHF, Jung RE, Feloutzis A. A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol. 2002;29:226–31.CrossRefPubMed
15.
16.
go back to reference Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4:3–11.CrossRefPubMed Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4:3–11.CrossRefPubMed
17.
go back to reference Kuhn JL, Goldstein SA, et al. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8:833–42.CrossRefPubMed Kuhn JL, Goldstein SA, et al. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8:833–42.CrossRefPubMed
18.
go back to reference Müller R, van Campenhout H, van Damme B, et al. Morphometric analysis of human biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23:59–66.CrossRefPubMed Müller R, van Campenhout H, van Damme B, et al. Morphometric analysis of human biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23:59–66.CrossRefPubMed
19.
go back to reference Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Micro-CT and morphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study on rat calvarial defects. Int J Oral Maxillofac Implants. 2014;29:826–35.CrossRefPubMed Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Micro-CT and morphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study on rat calvarial defects. Int J Oral Maxillofac Implants. 2014;29:826–35.CrossRefPubMed
20.
go back to reference Vovk V, Vovk Y. Results of the guided bone regeneration in patients with jaw defects and atrophies by means of Mondeal® occlusive titanium membranes. J Oral Maxillofac Surg. 2005;34:74.CrossRef Vovk V, Vovk Y. Results of the guided bone regeneration in patients with jaw defects and atrophies by means of Mondeal® occlusive titanium membranes. J Oral Maxillofac Surg. 2005;34:74.CrossRef
21.
go back to reference Zellin G, Linde A. Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats. Biomaterials. 1996;17:695–702.CrossRefPubMed Zellin G, Linde A. Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats. Biomaterials. 1996;17:695–702.CrossRefPubMed
22.
go back to reference Hardwick R, Scantlebury TV, Sanchez R, Whitley N, Ambruster J. Membrane design criteria for guided bone regeneration of the alveolar ridge. In: Buser D, Dahlin C, Schenk RK, editors. Guided bone regeneration in implant dentistry. Chicago: Quintessence; 1994. p. 101–35. Hardwick R, Scantlebury TV, Sanchez R, Whitley N, Ambruster J. Membrane design criteria for guided bone regeneration of the alveolar ridge. In: Buser D, Dahlin C, Schenk RK, editors. Guided bone regeneration in implant dentistry. Chicago: Quintessence; 1994. p. 101–35.
23.
go back to reference Von Arx T, Wallkamm B, Hardt N. Localized ridge augmentation using a microtitanium mesh: a report on 27 implants followed from 1 to 3 years after functional loading. Clin Oral Implants Res. 1998;9:123–30.CrossRef Von Arx T, Wallkamm B, Hardt N. Localized ridge augmentation using a microtitanium mesh: a report on 27 implants followed from 1 to 3 years after functional loading. Clin Oral Implants Res. 1998;9:123–30.CrossRef
24.
go back to reference Bobyn J, Stackpool G, Hacking S. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg [Br]. 1999;81:907–14.CrossRef Bobyn J, Stackpool G, Hacking S. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg [Br]. 1999;81:907–14.CrossRef
25.
go back to reference Gutta R, Baker RA, Bartolucci AA, Louis PJ. Barrier membranes used for ridge augmentation: is there an optimal pore size? J Oral Maxillofac Surg. 2009;67:1218–25.CrossRefPubMed Gutta R, Baker RA, Bartolucci AA, Louis PJ. Barrier membranes used for ridge augmentation: is there an optimal pore size? J Oral Maxillofac Surg. 2009;67:1218–25.CrossRefPubMed
26.
go back to reference Spector M, Flemming W, Kreutner A. Bone growth into porous high-density polyethylene. J Biomed Mater Res. 1976;10:595–603.CrossRefPubMed Spector M, Flemming W, Kreutner A. Bone growth into porous high-density polyethylene. J Biomed Mater Res. 1976;10:595–603.CrossRefPubMed
27.
go back to reference Welsh R, Pilliar R, Macnab I. Surgical implants. The role of surface porosity in fixation to bone and acrylic. J Bone Joint Surg [Am]. 1971;53:963–77.CrossRef Welsh R, Pilliar R, Macnab I. Surgical implants. The role of surface porosity in fixation to bone and acrylic. J Bone Joint Surg [Am]. 1971;53:963–77.CrossRef
28.
go back to reference Galgut P, Pitrola R, Waite I, Doyle C, Smith R. Histological evaluation of biodegradable and non-degradable membranes placed transcutaneously in rats. J Clin Periodontol. 1991;18:581–6.CrossRefPubMed Galgut P, Pitrola R, Waite I, Doyle C, Smith R. Histological evaluation of biodegradable and non-degradable membranes placed transcutaneously in rats. J Clin Periodontol. 1991;18:581–6.CrossRefPubMed
29.
go back to reference Carlino P, Pepe V, Pollice G, Grassi FR. Immediate transmucosal implant placement in fresh maxillary and mandibular molar extraction sockets: description of technique and preliminary results. Minerva Stomatol. 2008;57:471.PubMed Carlino P, Pepe V, Pollice G, Grassi FR. Immediate transmucosal implant placement in fresh maxillary and mandibular molar extraction sockets: description of technique and preliminary results. Minerva Stomatol. 2008;57:471.PubMed
30.
go back to reference Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofa Surg Clin North Am. 2007;19:513.CrossRef Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofa Surg Clin North Am. 2007;19:513.CrossRef
31.
go back to reference Yamasaki N, Hirao M, Nanno K, Sugiyasu K, Tamai N, Hashimoto N, Yoshikawa H, Myoui A. A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res Part B. 2009;91B:788–98.CrossRef Yamasaki N, Hirao M, Nanno K, Sugiyasu K, Tamai N, Hashimoto N, Yoshikawa H, Myoui A. A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res Part B. 2009;91B:788–98.CrossRef
32.
go back to reference Tran YH, Ohsaki K, Ii K, Ye Q, Yokozeki M, Moriyama K. Histological reaction of auditory bulla bone to synthetic auditory ossicle (Apaceram®) in rats. J Med Invest. 2000;47:56–60.PubMed Tran YH, Ohsaki K, Ii K, Ye Q, Yokozeki M, Moriyama K. Histological reaction of auditory bulla bone to synthetic auditory ossicle (Apaceram®) in rats. J Med Invest. 2000;47:56–60.PubMed
33.
go back to reference Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng, C. 2007;27(3):441–9.CrossRef Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng, C. 2007;27(3):441–9.CrossRef
34.
go back to reference Rodella LF, Favero G, Labanca M. Biomaterials in maxillofacial surgery: membranes and grafts. Int J Biomed Sci. 2011;7:81–8.PubMedPubMedCentral Rodella LF, Favero G, Labanca M. Biomaterials in maxillofacial surgery: membranes and grafts. Int J Biomed Sci. 2011;7:81–8.PubMedPubMedCentral
35.
go back to reference Stavropoulos F, Dahlin C, Ruskin JD, Johansson C. A comparative study of barrier membranes as graft protectors in the treatment of localized bone defects. An experimental study in a canine model. Clin Oral Implants Res. 2004;15:435.CrossRefPubMed Stavropoulos F, Dahlin C, Ruskin JD, Johansson C. A comparative study of barrier membranes as graft protectors in the treatment of localized bone defects. An experimental study in a canine model. Clin Oral Implants Res. 2004;15:435.CrossRefPubMed
36.
go back to reference Tsukeoka T, Suzuki M, Ohtsuki C, Tsuneizumi Y, Miyagi J, Sugino A, Inoue T, Michihiro R, Moriya H. Enhanced fixation of implants by bone ingrowth to titanium fiber mesh: effect of incorporation of hydroxyapatite powder. J Biomed Mater Res Part B: Appl Biomater. 2005;75B:168–76.CrossRef Tsukeoka T, Suzuki M, Ohtsuki C, Tsuneizumi Y, Miyagi J, Sugino A, Inoue T, Michihiro R, Moriya H. Enhanced fixation of implants by bone ingrowth to titanium fiber mesh: effect of incorporation of hydroxyapatite powder. J Biomed Mater Res Part B: Appl Biomater. 2005;75B:168–76.CrossRef
37.
go back to reference Wagner JR. Clinical and histological case study using resorbable hydroxylapatite for the repair of osseous defects prior to endosseous implant surgery. J Oral Implantol. 1989;15:186–92.PubMed Wagner JR. Clinical and histological case study using resorbable hydroxylapatite for the repair of osseous defects prior to endosseous implant surgery. J Oral Implantol. 1989;15:186–92.PubMed
38.
go back to reference Bartee BK, Carr JA. Evaluation of a high-density polytetrafluoroethylene membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J Oral Implantol. 1995;21:88–95.PubMed Bartee BK, Carr JA. Evaluation of a high-density polytetrafluoroethylene membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J Oral Implantol. 1995;21:88–95.PubMed
39.
go back to reference Linde A, Thoren C, Dahlin C, Sandberg E. Creation of new bone by an osteopromotive membrane technique: an experimental study in rats. J Oral Maxillofac Surg. 1993;51:892–7.CrossRefPubMed Linde A, Thoren C, Dahlin C, Sandberg E. Creation of new bone by an osteopromotive membrane technique: an experimental study in rats. J Oral Maxillofac Surg. 1993;51:892–7.CrossRefPubMed
40.
go back to reference Hjorting HE, Andreasen JO. Incomplete bone healing of experimental cavities in dog mandibles. Br J Oral Surg. 1971;9:33–40.CrossRef Hjorting HE, Andreasen JO. Incomplete bone healing of experimental cavities in dog mandibles. Br J Oral Surg. 1971;9:33–40.CrossRef
41.
go back to reference Lundgren AK, Lundgren D, Taylor A. Influence of barrier occlusiveness on guided bone augmentation. An experimental study in the rat. Clin Oral Implants Res. 1998;9:251–60.CrossRefPubMed Lundgren AK, Lundgren D, Taylor A. Influence of barrier occlusiveness on guided bone augmentation. An experimental study in the rat. Clin Oral Implants Res. 1998;9:251–60.CrossRefPubMed
42.
go back to reference Rakhmatia YD, Ayukawa Y, Atsuta I, Furuhashi A, Koyano K. Fibroblast attachment onto novel titanium mesh membranes for guided bone regeneration. Odontology. 2015;103:218–26.CrossRefPubMed Rakhmatia YD, Ayukawa Y, Atsuta I, Furuhashi A, Koyano K. Fibroblast attachment onto novel titanium mesh membranes for guided bone regeneration. Odontology. 2015;103:218–26.CrossRefPubMed
43.
go back to reference Sajith AL, Tarun KAB, Sohini C, Triveni MG, Dhoom SM. Use of titanium mesh for staged 3D localized alveolar ridge Augmentation. Int J Oral Health Sci. 2014;4:42–5.CrossRef Sajith AL, Tarun KAB, Sohini C, Triveni MG, Dhoom SM. Use of titanium mesh for staged 3D localized alveolar ridge Augmentation. Int J Oral Health Sci. 2014;4:42–5.CrossRef
44.
go back to reference Umeda M, Iwata K, Eida K, Take Y, Naito I, Takahashi N, Shimada K, Kurioka K, Kawamoto H, Teranobu O, Shimada K. Osteoconductivity of HAP granule and stability of HAP-bone complex a comparative study among newly developed HAP Granule (Kobeceram) and others. J Jpn Stomatol Soc. 1992;41:258–67. Umeda M, Iwata K, Eida K, Take Y, Naito I, Takahashi N, Shimada K, Kurioka K, Kawamoto H, Teranobu O, Shimada K. Osteoconductivity of HAP granule and stability of HAP-bone complex a comparative study among newly developed HAP Granule (Kobeceram) and others. J Jpn Stomatol Soc. 1992;41:258–67.
45.
go back to reference Tevlin R, McArdle A, Atashroo D, Walmsley GG, Senarath-Yapa K, Zielins ER, Paik KJ, Longaker MT, Wan DC. Biomaterials for craniofacial bone engineering. J Dent Res. 2014;93:1187–95.CrossRefPubMedPubMedCentral Tevlin R, McArdle A, Atashroo D, Walmsley GG, Senarath-Yapa K, Zielins ER, Paik KJ, Longaker MT, Wan DC. Biomaterials for craniofacial bone engineering. J Dent Res. 2014;93:1187–95.CrossRefPubMedPubMedCentral
46.
go back to reference Petrovic V, Zivkovic P, Petrovic D, Stefanovic V. Craniofacial bone tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:e1–9.CrossRefPubMed Petrovic V, Zivkovic P, Petrovic D, Stefanovic V. Craniofacial bone tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:e1–9.CrossRefPubMed
Metadata
Title
Micro-computed tomography analysis of early stage bone healing using micro-porous titanium mesh for guided bone regeneration: preliminary experiment in a canine model
Authors
Yunia Dwi Rakhmatia
Yasunori Ayukawa
Yohei Jinno
Akihiro Furuhashi
Kiyoshi Koyano
Publication date
01-10-2017
Publisher
Springer Japan
Published in
Odontology / Issue 4/2017
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-017-0298-1

Other articles of this Issue 4/2017

Odontology 4/2017 Go to the issue