Skip to main content
Top
Published in: Odontology 4/2017

01-10-2017 | Original Article

Dental pulp tissue engineering of pulpotomized rat molars with bone marrow mesenchymal stem cells

Authors: Takafumi Ito, Tomoatsu Kaneko, Yukiko Sueyama, Reika Kaneko, Takashi Okiji

Published in: Odontology | Issue 4/2017

Login to get access

Abstract

The major goal of dental pulp tissue engineering is to enable the healing of inflamed tissue or to replace necrotic pulp tissue with newly formed dental pulp tissue. Here, we report a protocol for pulp tissue engineering in vivo in pulpotomized rat teeth using constructs of rat bone marrow mesenchymal stem cells, preformed biodegradable scaffolds, and hydrogel. The constructs were implanted into pulpotomized pulp chambers for 3, 7, or 14 days. At 3 days, cells were located mainly along the preformed scaffolds. At 7 days, pulp tissue regeneration was observed in almost the entire implanted region. At 14 days, pulp tissue regeneration further progressed throughout the implanted region. In immunohistochemistry, at 3 days, a number of small and round macrophages immunoreactive to CD68 were predominantly distributed around the scaffolds. The density of CD68+ macrophages decreased until 14 days. On the other hand, nestin-expressing odontoblast-like cells beneath the dentin at the border of implanted region increased until 14 days. Quantitative gene expression analysis revealed that odontoblast differentiation marker dentin sialophosphoprotein mRNA in the implanted region gradually increased until 14 days. Together, the results suggested that regeneration of dental pulp tissue had occurred. Thus, our study provides a novel experimental rat model of dental pulp regeneration.
Literature
1.
go back to reference Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9:205–16.CrossRef Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9:205–16.CrossRef
2.
go back to reference Caplan DJ, Cai J, Yin G, White BA. Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent. 2005;65:90–9.CrossRefPubMed Caplan DJ, Cai J, Yin G, White BA. Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent. 2005;65:90–9.CrossRefPubMed
3.
go back to reference Barthel CR, Rosenkranz B, Leuenberg A, Roulet JF. Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study. J Endod. 2000;26:525–8.CrossRefPubMed Barthel CR, Rosenkranz B, Leuenberg A, Roulet JF. Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study. J Endod. 2000;26:525–8.CrossRefPubMed
5.
go back to reference Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010;16:605–15.CrossRefPubMed Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010;16:605–15.CrossRefPubMed
6.
go back to reference Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 2003;82:976–81.CrossRefPubMed Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 2003;82:976–81.CrossRefPubMed
7.
go back to reference Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D’Souza RN. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A. 2012;18:176–84.CrossRefPubMed Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D’Souza RN. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A. 2012;18:176–84.CrossRefPubMed
8.
go back to reference Aulisa L, Dong H, Hartgerink JD. Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules. 2009;10:2694–8.CrossRefPubMed Aulisa L, Dong H, Hartgerink JD. Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules. 2009;10:2694–8.CrossRefPubMed
9.
go back to reference Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC. Tissue engineering in dentistry. J Dent. 2014;42:915–28.CrossRefPubMed Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC. Tissue engineering in dentistry. J Dent. 2014;42:915–28.CrossRefPubMed
10.
go back to reference Yu N, Plachokova A, Yang F. Engineering of dental tissues: scaffolds and preclinical models. In: Huang GTJ, Thesleff I, editors. Stem cells in craniofacial development and regeneration. NJ: Wiley; 2013. p. 409–29.CrossRef Yu N, Plachokova A, Yang F. Engineering of dental tissues: scaffolds and preclinical models. In: Huang GTJ, Thesleff I, editors. Stem cells in craniofacial development and regeneration. NJ: Wiley; 2013. p. 409–29.CrossRef
12.
go back to reference Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15:13–27.CrossRefPubMed Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15:13–27.CrossRefPubMed
13.
go back to reference Terling C, Rass A, Mitsiadis TA, Fried K, Lendahl U, Wroblewski J. Expression of the intermediate filament nestin during rodent tooth development. Int J Dev Biol. 1995;39:947–56.PubMed Terling C, Rass A, Mitsiadis TA, Fried K, Lendahl U, Wroblewski J. Expression of the intermediate filament nestin during rodent tooth development. Int J Dev Biol. 1995;39:947–56.PubMed
14.
go back to reference Mooney DJ, Sano K, Kaufmann PM, Majahod K, Schloo B, Vacanti JP, Langer R. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J Biomed Mater Res. 1997;37:413–20.CrossRefPubMed Mooney DJ, Sano K, Kaufmann PM, Majahod K, Schloo B, Vacanti JP, Langer R. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J Biomed Mater Res. 1997;37:413–20.CrossRefPubMed
15.
16.
go back to reference Kaneko T, Zhang Z, Mantellini MG, Karl E, Zeitlin B, Verhaegen M, Soengas MS, Lingen M, Strieter RM, Nunez G, Nör JE. Bcl-2 orchestrates a cross-talk between endothelial and tumor cells that promotes tumor growth. Cancer Res. 2007;15:9685–93.CrossRef Kaneko T, Zhang Z, Mantellini MG, Karl E, Zeitlin B, Verhaegen M, Soengas MS, Lingen M, Strieter RM, Nunez G, Nör JE. Bcl-2 orchestrates a cross-talk between endothelial and tumor cells that promotes tumor growth. Cancer Res. 2007;15:9685–93.CrossRef
17.
go back to reference Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007;13:2369–85.CrossRefPubMed Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007;13:2369–85.CrossRefPubMed
18.
go back to reference Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34:962–9.CrossRefPubMed Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34:962–9.CrossRefPubMed
19.
go back to reference Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.CrossRefPubMed Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.CrossRefPubMed
20.
go back to reference Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006;24:462–71.CrossRefPubMed Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006;24:462–71.CrossRefPubMed
21.
go back to reference Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180–92.CrossRefPubMed Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180–92.CrossRefPubMed
22.
go back to reference Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y, Ohgushi H. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng. 2005;11:663–73.CrossRefPubMed Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y, Ohgushi H. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng. 2005;11:663–73.CrossRefPubMed
23.
go back to reference Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006;108:2114–20.CrossRefPubMedPubMedCentral Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006;108:2114–20.CrossRefPubMedPubMedCentral
24.
go back to reference Nishida E, Miyaji H, Kato A, Takita H, Iwanaga T, Momose T, Ogawa K, Murakami S, Sugaya T, Kawanami M. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket. Int J Nanomed. 2016;11:2265–77. Nishida E, Miyaji H, Kato A, Takita H, Iwanaga T, Momose T, Ogawa K, Murakami S, Sugaya T, Kawanami M. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket. Int J Nanomed. 2016;11:2265–77.
25.
go back to reference Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35:4477–88.CrossRefPubMedPubMedCentral Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35:4477–88.CrossRefPubMedPubMedCentral
Metadata
Title
Dental pulp tissue engineering of pulpotomized rat molars with bone marrow mesenchymal stem cells
Authors
Takafumi Ito
Tomoatsu Kaneko
Yukiko Sueyama
Reika Kaneko
Takashi Okiji
Publication date
01-10-2017
Publisher
Springer Japan
Published in
Odontology / Issue 4/2017
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-016-0283-0

Other articles of this Issue 4/2017

Odontology 4/2017 Go to the issue