Skip to main content
Top
Published in: Journal of Orthopaedics and Traumatology 2/2008

Open Access 01-06-2008 | Original Article

Xenogenic demineralized bone matrix and fresh autogenous cortical bone effects on experimental bone healing: radiological, histopathological and biomechanical evaluation

Authors: A. S. Bigham, S. N. Dehghani, Z. Shafiei, S. Torabi Nezhad

Published in: Journal of Orthopaedics and Traumatology | Issue 2/2008

Login to get access

Abstract

Background

Bone grafting is used to enhance healing in osteotomies, arthrodesis, and multifragmentary fractures and to replace bony loss resulting from neoplasia or cysts. They are source of osteoprogenitor cells and induce bone formation and provide mechanical support for vascular and bone ingrowth. Autografts are used commonly but quantity of harvested bone is limited. The aim of this study is to evaluate autograft and new xenogenic bovine demineralized bone matrix (DBM) effects on bone healing process.

Materials and methods

Twenty male White New Zealand rabbits were used in this study. In group I (n = 10) the defect was filled by xenogenic DBM and in autograft group the defect was filled by fresh autogenous cortical graft and fixed by cercelage wire. Radiological, histopathological and biomechanical evaluations were performed blindly and results scored and analyzed statistically.

Results

Statistical tests did not reveal any significant differences between two groups on the 14th postoperative day radiographically (P > 0.05). There was a significant difference for union on 28th and 42nd postoperative days and for remodeling at on the 56th postoperative day radiologically (P < 0.05). Statistical tests did not support any significant differences between two groups for radiological bone formation (P > 0.05). Histopathological and biomechanical evaluation revealed no significant differences between two groups.

Conclusions

The results of this study indicate that satisfactory healing occurred in rabbit radius defect filled with xenogenic bovine DBM. Complications were not identified and healing was faster, same as in cortical autogenous grafting.
Literature
1.
go back to reference Van heest A, Swiontkowski M (1999) Bone-graft substitutes. Lancet 353:28–29CrossRef Van heest A, Swiontkowski M (1999) Bone-graft substitutes. Lancet 353:28–29CrossRef
2.
go back to reference Alexander JW (1985) Leonard’s orthopedic surgery of the dog and cat. WB Saunders Company, Gainesville Alexander JW (1985) Leonard’s orthopedic surgery of the dog and cat. WB Saunders Company, Gainesville
4.
go back to reference Brinker WO, Piermattei DL, Flo GL (1997) Bone grafting. Small animal orthopedics and fracture repair. WB Saunders Company, Gainesville, pp 147–153 Brinker WO, Piermattei DL, Flo GL (1997) Bone grafting. Small animal orthopedics and fracture repair. WB Saunders Company, Gainesville, pp 147–153
5.
go back to reference Fitch R, Kerwin S, Newman-Gage H, Sinibaldi KR (1997) Bone autografts and allografts in dogs. Compend Vet Contin Educ 19:558–575 Fitch R, Kerwin S, Newman-Gage H, Sinibaldi KR (1997) Bone autografts and allografts in dogs. Compend Vet Contin Educ 19:558–575
6.
go back to reference Fox SM (1984) Cancellous bone grafting in the dog: an overview. J Am Anim Hosp Assoc 20:840–848 Fox SM (1984) Cancellous bone grafting in the dog: an overview. J Am Anim Hosp Assoc 20:840–848
7.
go back to reference McLaughlin RM, Roush JK (1998) Autogenous cancellous and cortico-cancellous bone grafting. Vet Med 93:1071–1074 McLaughlin RM, Roush JK (1998) Autogenous cancellous and cortico-cancellous bone grafting. Vet Med 93:1071–1074
8.
go back to reference Albrek T, Johansson C (2001) Osteoinduction, osteoconduction and osteointegration. Eur Spine J 10:S96–S101CrossRef Albrek T, Johansson C (2001) Osteoinduction, osteoconduction and osteointegration. Eur Spine J 10:S96–S101CrossRef
9.
go back to reference Griffon DJ, McLaughlin RM, Hoskinson JJ (1996) Effects of a bone-inducing agent derived from a cultured human osteosarcoma cell line after orthopedic and heterotopic implantation in the dog. Vet Comp Orthop traumatol 9:22–28 Griffon DJ, McLaughlin RM, Hoskinson JJ (1996) Effects of a bone-inducing agent derived from a cultured human osteosarcoma cell line after orthopedic and heterotopic implantation in the dog. Vet Comp Orthop traumatol 9:22–28
10.
go back to reference Oonishi H, Kushitani S, Yasukawa E, Kawakami H, Nakata A, Koh S, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325PubMedCrossRef Oonishi H, Kushitani S, Yasukawa E, Kawakami H, Nakata A, Koh S, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325PubMedCrossRef
11.
go back to reference Trevor PB, Stevenson S, Carrig CB, Waldron DR, Smith MM (1992) Evaluation of biocompatible osteoconductive polymer as an orthopedic implant in dogs. J Am Vet Med Assoc 200:1651–1660PubMed Trevor PB, Stevenson S, Carrig CB, Waldron DR, Smith MM (1992) Evaluation of biocompatible osteoconductive polymer as an orthopedic implant in dogs. J Am Vet Med Assoc 200:1651–1660PubMed
12.
go back to reference Friedlaender GE (1987) Bone grafts: the basic science rationale for clinical applications. J Bone Joint Surg Am 69:786–790PubMed Friedlaender GE (1987) Bone grafts: the basic science rationale for clinical applications. J Bone Joint Surg Am 69:786–790PubMed
13.
go back to reference Inoue K, Ohgushi H, Yoshikawa T, Okumura M, Sempuku T, Tamai S, Dohi Y (1997) The effect of aging on bone formation in porous hydroxyapatite: biochemical and histologic analysis. J Bone Miner Res 12:989–994PubMedCrossRef Inoue K, Ohgushi H, Yoshikawa T, Okumura M, Sempuku T, Tamai S, Dohi Y (1997) The effect of aging on bone formation in porous hydroxyapatite: biochemical and histologic analysis. J Bone Miner Res 12:989–994PubMedCrossRef
14.
go back to reference Jin DD (1991) Bone matrix gelatin. Clinical application in 38 cases. Chung-Hua Wai Ko Tsa Chih 29:312–314PubMed Jin DD (1991) Bone matrix gelatin. Clinical application in 38 cases. Chung-Hua Wai Ko Tsa Chih 29:312–314PubMed
15.
go back to reference Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR (1996) Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res 324:39–46PubMedCrossRef Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR (1996) Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res 324:39–46PubMedCrossRef
16.
go back to reference Bostrom MPG, Lane JM, Berberian WS, Missri AAE, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM (1995) Immunolocalization and expression of bone morphogenic proteins 2 and 4 in fracture healing. J Orthop Res 13:357–367PubMedCrossRef Bostrom MPG, Lane JM, Berberian WS, Missri AAE, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM (1995) Immunolocalization and expression of bone morphogenic proteins 2 and 4 in fracture healing. J Orthop Res 13:357–367PubMedCrossRef
17.
go back to reference Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC (1994) Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental bone defects. J Bone Joint Surg Am 76:827–838PubMed Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC (1994) Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental bone defects. J Bone Joint Surg Am 76:827–838PubMed
18.
go back to reference Kirker-Head AC (1995) Recombinant bone morphogenic protein: novel substances for enhancing bone healing. Vet Surg 24:408–419PubMedCrossRef Kirker-Head AC (1995) Recombinant bone morphogenic protein: novel substances for enhancing bone healing. Vet Surg 24:408–419PubMedCrossRef
19.
go back to reference Reddi AH (1995) Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells. Clin Orthop Relat Res 313:115–119PubMed Reddi AH (1995) Bone morphogenetic proteins, bone marrow stromal cells, and mesenchymal stem cells. Clin Orthop Relat Res 313:115–119PubMed
20.
go back to reference Loredo GA, MacDonald MH, Benton HP (1995) Regulation of glycosaminoglycan metabolism by bone morphogenetic protein-2 in equine cartilage explant cultures. Am J Vet Res 57:554–559 Loredo GA, MacDonald MH, Benton HP (1995) Regulation of glycosaminoglycan metabolism by bone morphogenetic protein-2 in equine cartilage explant cultures. Am J Vet Res 57:554–559
21.
go back to reference Tanaka T, Fujii K, Ohta M, Soshi S, Kitamura A, Murota K (1995) Use of a guanidine extract of demineralized bone in the treatment of osteochondral defects of articular cartilage. J Orthop Res 13:464–469PubMedCrossRef Tanaka T, Fujii K, Ohta M, Soshi S, Kitamura A, Murota K (1995) Use of a guanidine extract of demineralized bone in the treatment of osteochondral defects of articular cartilage. J Orthop Res 13:464–469PubMedCrossRef
22.
go back to reference Vail TB, Trotter GW, Powers BE (1994) Equine demineralized bone matrix: relationship between particle size and osteoinduction. Vet Surg 23:386–395PubMedCrossRef Vail TB, Trotter GW, Powers BE (1994) Equine demineralized bone matrix: relationship between particle size and osteoinduction. Vet Surg 23:386–395PubMedCrossRef
23.
go back to reference Forell EB, Straw RC, Powers BE, et al (1993) Evaluation of the osteoinductive capacity of canine demineralized bone matrix in heterotopic muscle sites of athymic rats. Vet Comp Orthop Traumatol 6:21–28 Forell EB, Straw RC, Powers BE, et al (1993) Evaluation of the osteoinductive capacity of canine demineralized bone matrix in heterotopic muscle sites of athymic rats. Vet Comp Orthop Traumatol 6:21–28
24.
25.
go back to reference Urist MR, Strakes BS (1970) Bone formation in implants of partially and wholly demineralized bone matrix. Clin Orthop 71:271–278PubMedCrossRef Urist MR, Strakes BS (1970) Bone formation in implants of partially and wholly demineralized bone matrix. Clin Orthop 71:271–278PubMedCrossRef
26.
go back to reference Bolander ME, Galian G (1983) The use of demineralize bone matrix in the repair of segmental defect. J Bone Joint Surg 68A:1264–1274 Bolander ME, Galian G (1983) The use of demineralize bone matrix in the repair of segmental defect. J Bone Joint Surg 68A:1264–1274
27.
go back to reference Lane JM, Sandhu HS (1987) Current approach to experimental bone grafting. Orthop Clin North Am 18:213–225PubMed Lane JM, Sandhu HS (1987) Current approach to experimental bone grafting. Orthop Clin North Am 18:213–225PubMed
28.
go back to reference Heiple KG, Goldberg VM, Powell AE, Bos GD, Zika JM (1987) Biology of cancellous bone grafts. Orthop Clin North Am 18:179–185PubMed Heiple KG, Goldberg VM, Powell AE, Bos GD, Zika JM (1987) Biology of cancellous bone grafts. Orthop Clin North Am 18:179–185PubMed
29.
go back to reference An YH, Friedman RJ (1999) Animal models in orthopedic research. CRC Press Inc., Boca Raton An YH, Friedman RJ (1999) Animal models in orthopedic research. CRC Press Inc., Boca Raton
30.
go back to reference Chalmers J, Gray DH, Rush J (1975) Observations on the induction of bone in soft tissues. J Bone Joint Surg Br 57:36–45PubMed Chalmers J, Gray DH, Rush J (1975) Observations on the induction of bone in soft tissues. J Bone Joint Surg Br 57:36–45PubMed
31.
go back to reference Dahners LE, Jacobs RR (1985) Long bone defects treated with demineralized bone. South Med J 78:933–934PubMedCrossRef Dahners LE, Jacobs RR (1985) Long bone defects treated with demineralized bone. South Med J 78:933–934PubMedCrossRef
32.
go back to reference Einhorn TA, Lane JM, Burstein AH, Kopman CR, Vigorita VJ (1984) The healing of segmental bone defects induced by demineralized bone matrix: a radiographic and biomechanical study. J Bone Joint Surg Am 66:274–279PubMed Einhorn TA, Lane JM, Burstein AH, Kopman CR, Vigorita VJ (1984) The healing of segmental bone defects induced by demineralized bone matrix: a radiographic and biomechanical study. J Bone Joint Surg Am 66:274–279PubMed
33.
go back to reference Gepstein R, Weiss RE, Saba K, Hallel T (1987) Bridging large defects in bone by demineralized bone matrix in the form of a powder. J Bone Joint Surg Am 69:984–992PubMed Gepstein R, Weiss RE, Saba K, Hallel T (1987) Bridging large defects in bone by demineralized bone matrix in the form of a powder. J Bone Joint Surg Am 69:984–992PubMed
34.
go back to reference Hulth A, Johnell O, Henricson A (1988) The implantation of demineralized fracture matrix yields more new bone formation than does intact matrix. Clin Orthop 234:235–249PubMed Hulth A, Johnell O, Henricson A (1988) The implantation of demineralized fracture matrix yields more new bone formation than does intact matrix. Clin Orthop 234:235–249PubMed
35.
go back to reference Lindholm TS, Ragni P, Lindholm TC (1988) Response of bone marrow stroma cells to demineralized cortical bone matrix in experimental spinal fusion in rabbits. Clin Orthop 230:296–302PubMed Lindholm TS, Ragni P, Lindholm TC (1988) Response of bone marrow stroma cells to demineralized cortical bone matrix in experimental spinal fusion in rabbits. Clin Orthop 230:296–302PubMed
36.
go back to reference Tuli SM, Singh AD (1978) The osteoinductive property of decalcified bone matrix: an experimental study. J Bone Joint Surg Br 60:116–123PubMed Tuli SM, Singh AD (1978) The osteoinductive property of decalcified bone matrix: an experimental study. J Bone Joint Surg Br 60:116–123PubMed
38.
go back to reference Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53:243–283PubMedCrossRef Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53:243–283PubMedCrossRef
39.
go back to reference Burwell RG (1985) The function of bone marrow in the incorporation of a bone graft. Clin Orthop 200:125–141PubMed Burwell RG (1985) The function of bone marrow in the incorporation of a bone graft. Clin Orthop 200:125–141PubMed
40.
go back to reference Martin G, Boden SD, Morone MA, Titus L (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24:637–645PubMedCrossRef Martin G, Boden SD, Morone MA, Titus L (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24:637–645PubMedCrossRef
41.
go back to reference Urist MR, Mikulski AJ, Lietz A (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA 76:1928–1832CrossRef Urist MR, Mikulski AJ, Lietz A (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA 76:1928–1832CrossRef
42.
go back to reference Urist MF, Sato K, Brownell AG (1983) Human bone morphogenetic protein. Proc Soc Exp Biol Med 173:194–199PubMedCrossRef Urist MF, Sato K, Brownell AG (1983) Human bone morphogenetic protein. Proc Soc Exp Biol Med 173:194–199PubMedCrossRef
43.
go back to reference Bauer TW, Muschler GF (2000) Bone graft materials: an overview of the basic science. Clin Orthop Relat Res 371:10–27PubMedCrossRef Bauer TW, Muschler GF (2000) Bone graft materials: an overview of the basic science. Clin Orthop Relat Res 371:10–27PubMedCrossRef
44.
go back to reference Khan SN, Cammisa FPJ, Sandhu HS, Diwan AD, Girardi FP, Lane JM (2005) The biology of bone grafting. J Am Acad Orthop Surg 13:77–86PubMed Khan SN, Cammisa FPJ, Sandhu HS, Diwan AD, Girardi FP, Lane JM (2005) The biology of bone grafting. J Am Acad Orthop Surg 13:77–86PubMed
45.
go back to reference Guizzardi S, Di Silvestre M, Scandroglio R, Ruggeri A, Savini R (1992) Implants of heterologous demineralized bone matrix for induction of posterior spinal fusion in rats. Spine 17:701–707PubMedCrossRef Guizzardi S, Di Silvestre M, Scandroglio R, Ruggeri A, Savini R (1992) Implants of heterologous demineralized bone matrix for induction of posterior spinal fusion in rats. Spine 17:701–707PubMedCrossRef
46.
go back to reference Goldberg VM, Stevenson S, Shaffer JW, Davy D, Klein L, Zika J, Field G (1990) Biological and physical properties of autogenous vascularized fibular grafts in dogs. J Bone Joint Surg Am 72:801–810PubMed Goldberg VM, Stevenson S, Shaffer JW, Davy D, Klein L, Zika J, Field G (1990) Biological and physical properties of autogenous vascularized fibular grafts in dogs. J Bone Joint Surg Am 72:801–810PubMed
47.
go back to reference Boden SD, Schimandle JH, Hutton WC (1995) Lumbar intertransverse process spine arthrodesis using a bovine-derived osteoinductive bone protein. J Bone Joint Surg Am 77:1404–1417PubMed Boden SD, Schimandle JH, Hutton WC (1995) Lumbar intertransverse process spine arthrodesis using a bovine-derived osteoinductive bone protein. J Bone Joint Surg Am 77:1404–1417PubMed
48.
go back to reference Boden SD, Schimandle JH, Hutton WC (1995) 1995 Volvo award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion II. Study of dose, carrier, and species. Spine 20:2633–2644PubMedCrossRef Boden SD, Schimandle JH, Hutton WC (1995) 1995 Volvo award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion II. Study of dose, carrier, and species. Spine 20:2633–2644PubMedCrossRef
49.
go back to reference Boden SD, Schimandle JH, Hutton WC (1995) An experimental lumbar intertransverse process spinal fusion model: radiographic, histologic, and biomechanical healing characteristics. Spine 20:412–420PubMedCrossRef Boden SD, Schimandle JH, Hutton WC (1995) An experimental lumbar intertransverse process spinal fusion model: radiographic, histologic, and biomechanical healing characteristics. Spine 20:412–420PubMedCrossRef
50.
go back to reference Silcox DH, Boden SD, Schimandle JH, Johnson P, Whitesides TE, Hutton WC (1998) Reversing the inhibitory effect of nicotine on spinal fusion using an osteoinductive protein extract. Spine 23:291–296PubMedCrossRef Silcox DH, Boden SD, Schimandle JH, Johnson P, Whitesides TE, Hutton WC (1998) Reversing the inhibitory effect of nicotine on spinal fusion using an osteoinductive protein extract. Spine 23:291–296PubMedCrossRef
51.
go back to reference Morone MA, Boden SD (1998) Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 23:159–167PubMedCrossRef Morone MA, Boden SD (1998) Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 23:159–167PubMedCrossRef
Metadata
Title
Xenogenic demineralized bone matrix and fresh autogenous cortical bone effects on experimental bone healing: radiological, histopathological and biomechanical evaluation
Authors
A. S. Bigham
S. N. Dehghani
Z. Shafiei
S. Torabi Nezhad
Publication date
01-06-2008
Publisher
Springer International Publishing
Published in
Journal of Orthopaedics and Traumatology / Issue 2/2008
Print ISSN: 1590-9921
Electronic ISSN: 1590-9999
DOI
https://doi.org/10.1007/s10195-008-0006-6

Other articles of this Issue 2/2008

Journal of Orthopaedics and Traumatology 2/2008 Go to the issue