Skip to main content
Top
Published in: The Journal of Headache and Pain 3/2011

Open Access 01-06-2011 | Original

Does visual cortex lactate increase following photic stimulation in migraine without aura patients? A functional 1H-MRS study

Authors: Harmen Reyngoudt, Koen Paemeleire, Anneloor Dierickx, Benedicte Descamps, Pieter Vandemaele, Yves De Deene, Eric Achten

Published in: The Journal of Headache and Pain | Issue 3/2011

Login to get access

Abstract

Proton magnetic resonance spectroscopy (1H-MRS) has been used in a number of studies to assess noninvasively the temporal changes of lactate (Lac) in the activated human brain. Migraine neurobiology involves lack of cortical habituation to repetitive stimuli and a mitochondrial component has been put forward. Our group has recently demonstrated a reduction in the high-energy phosphates adenosine triphosphate (ATP) and phosphocreatine (PCr) in the occipital lobe of migraine without aura (MwoA) patients, at least in a subgroup, in a phosphorus MRS (31P-MRS) study. In previous studies, basal Lac levels or photic stimulation (PS)-induced Lac levels were found to be increased in patients with migraine with aura (MwA) and migraine patients with visual symptoms and paraesthesia, paresia and/or dysphasia, respectively. The aim of this study was to perform functional 1H-MRS at 3 T in 20 MwoA patients and 20 control subjects. Repetitive visual stimulation was applied using MR-compatible goggles with 8 Hz checkerboard stimulation during 12 min. We did not observe any significant differences in signal integrals, ratios and absolute metabolite concentrations, including Lac, between MwoA patients and controls before PS. Lac also did not increase significantly during and following PS, both for MwoA patients and controls. Subtle Lac changes, smaller than the sensitivity threshold (i.e. estimated at 0.1–0.2 μmol/g at 3 T), cannot be detected by MRS. Our study does, however, argue against a significant switch to non-aerobic glucose metabolism during long-lasting PS of the visual cortex in MwoA patients.
Literature
1.
go back to reference Edmeads J, Mackell JA (2002) The economic impact of migraine: an analysis of direct and indirect costs. Headache 42(6):501–509, 12167138, 10.1046/j.1526-4610.2002.04262.xCrossRefPubMed Edmeads J, Mackell JA (2002) The economic impact of migraine: an analysis of direct and indirect costs. Headache 42(6):501–509, 12167138, 10.1046/j.1526-4610.2002.04262.xCrossRefPubMed
2.
go back to reference The International Headache Society Classification Subcommittee (2004) The International Classification of Headache Disorders, 2nd edn. Cephalalgia 24(S1):1–160 The International Headache Society Classification Subcommittee (2004) The International Classification of Headache Disorders, 2nd edn. Cephalalgia 24(S1):1–160
3.
go back to reference Goadsby PJ (2009) Pathophysiology of migraine. Neurol Clin 27(2):335–360, 19289219, 10.1016/j.ncl.2008.11.012CrossRefPubMed Goadsby PJ (2009) Pathophysiology of migraine. Neurol Clin 27(2):335–360, 19289219, 10.1016/j.ncl.2008.11.012CrossRefPubMed
4.
go back to reference Russell MB, Olesen J (1993) The genetics of migraine without aura and migraine with aura. Cephalalgia 13(4):245–248, 8374938, 10.1046/j.1468-2982.1993.1304245.x, 1:STN:280:DyaK3szos1OgtA%3D%3DCrossRefPubMed Russell MB, Olesen J (1993) The genetics of migraine without aura and migraine with aura. Cephalalgia 13(4):245–248, 8374938, 10.1046/j.1468-2982.1993.1304245.x, 1:STN:280:DyaK3szos1OgtA%3D%3DCrossRefPubMed
5.
go back to reference Russell MB, Iselius L, Olesen J (1995) Inheritance of migraine investigated by complex segregation analysis. Hum Genet 96(6):726–730, 8522335, 10.1007/BF00210307, 1:STN:280:DyaK287gtF2jsA%3D%3DCrossRefPubMed Russell MB, Iselius L, Olesen J (1995) Inheritance of migraine investigated by complex segregation analysis. Hum Genet 96(6):726–730, 8522335, 10.1007/BF00210307, 1:STN:280:DyaK287gtF2jsA%3D%3DCrossRefPubMed
6.
go back to reference De Vries B, Frants RR, Ferrari MD, Van Den Maagdenberg AM (2009) Molecular genetics of migraine. Hum Genet 126(1):115–132, 19455354, 10.1007/s00439-009-0684-zCrossRefPubMed De Vries B, Frants RR, Ferrari MD, Van Den Maagdenberg AM (2009) Molecular genetics of migraine. Hum Genet 126(1):115–132, 19455354, 10.1007/s00439-009-0684-zCrossRefPubMed
7.
go back to reference Olesen J (2008) The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther 120(2):157–171, 18789357, 10.1016/j.pharmthera.2008.08.003, 1:CAS:528:DC%2BD1cXht1Knsb3ICrossRefPubMed Olesen J (2008) The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther 120(2):157–171, 18789357, 10.1016/j.pharmthera.2008.08.003, 1:CAS:528:DC%2BD1cXht1Knsb3ICrossRefPubMed
8.
go back to reference Schoenen J (1994) Pathogenesis of migraine: the biobehavioural and hypoxia theories reconciled. Acta Neurol Belg 94(2):79–86, 8036881, 1:STN:280:DyaK2czhtVyqtg%3D%3DPubMed Schoenen J (1994) Pathogenesis of migraine: the biobehavioural and hypoxia theories reconciled. Acta Neurol Belg 94(2):79–86, 8036881, 1:STN:280:DyaK2czhtVyqtg%3D%3DPubMed
9.
go back to reference Schoenen J (1998) Cortical electrophysiology in migraine and possible pathogenic implications. Clin Neurosci 5(1):10–17, 9523052, 1:STN:280:DyaK1c7otlKmsQ%3D%3DPubMed Schoenen J (1998) Cortical electrophysiology in migraine and possible pathogenic implications. Clin Neurosci 5(1):10–17, 9523052, 1:STN:280:DyaK1c7otlKmsQ%3D%3DPubMed
10.
go back to reference Reyngoudt H, Paemeleire K, Descamps B, De Deene Y, Achten E (2011) 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia (in press) Reyngoudt H, Paemeleire K, Descamps B, De Deene Y, Achten E (2011) 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia (in press)
11.
go back to reference Reyngoudt H, De Deene Y, Descamps B, Paemeleire K, Achten E (2010) 1H-MRS of brain metabolites in migraine without aura: absolute quantification using the phantom replacement technique. Magn Reson Mater Phys 23(4):227–241, 10.1007/s10334-010-0221-z, 1:CAS:528:DC%2BC3cXhtVKhtbnICrossRef Reyngoudt H, De Deene Y, Descamps B, Paemeleire K, Achten E (2010) 1H-MRS of brain metabolites in migraine without aura: absolute quantification using the phantom replacement technique. Magn Reson Mater Phys 23(4):227–241, 10.1007/s10334-010-0221-z, 1:CAS:528:DC%2BC3cXhtVKhtbnICrossRef
12.
go back to reference Watanabe H, Kuwabara T, Ohkubo M, Tsuji S, Yuasa T (1996) Elevation of cerebral lactate detected by localized 1H-magnetic resonance spectroscopy in migraine during the interictal period. Neurology 47(4):1093–1095, 8857754, 1:STN:280:DyaK2s%2FhtVOhsw%3D%3DCrossRefPubMed Watanabe H, Kuwabara T, Ohkubo M, Tsuji S, Yuasa T (1996) Elevation of cerebral lactate detected by localized 1H-magnetic resonance spectroscopy in migraine during the interictal period. Neurology 47(4):1093–1095, 8857754, 1:STN:280:DyaK2s%2FhtVOhsw%3D%3DCrossRefPubMed
13.
go back to reference Grimaldi D, Tonon C, Cevoli S, Pierangeli G, Malucelli E, Rizzo G, Soriani S, Montagna P, Barbiroli B, Lodi R, Cortelli P (2010) Clinical and neuroimaging evidence of interictal cerebellar dysfunction in FHM2. Cephalalgia 30(5):552–559, 19673908, 1:STN:280:DC%2BC3cfmtlSjuw%3D%3DPubMed Grimaldi D, Tonon C, Cevoli S, Pierangeli G, Malucelli E, Rizzo G, Soriani S, Montagna P, Barbiroli B, Lodi R, Cortelli P (2010) Clinical and neuroimaging evidence of interictal cerebellar dysfunction in FHM2. Cephalalgia 30(5):552–559, 19673908, 1:STN:280:DC%2BC3cfmtlSjuw%3D%3DPubMed
14.
go back to reference Sandor PS, Dydak U, Schoenen J, Kollias SS, Hess K, Boesiger P, Agosti RM (2005) MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25(7):507–518, 15955037, 10.1111/j.1468-2982.2005.00900.x, 1:STN:280:DC%2BD2MzgvVWnsg%3D%3DCrossRefPubMed Sandor PS, Dydak U, Schoenen J, Kollias SS, Hess K, Boesiger P, Agosti RM (2005) MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25(7):507–518, 15955037, 10.1111/j.1468-2982.2005.00900.x, 1:STN:280:DC%2BD2MzgvVWnsg%3D%3DCrossRefPubMed
15.
go back to reference Siesjö BK (1978) Utilisation of substrates by brain tissues. In: Brain energy metabolism, 1st edn. John Wiley, New York, pp 101–130 Siesjö BK (1978) Utilisation of substrates by brain tissues. In: Brain energy metabolism, 1st edn. John Wiley, New York, pp 101–130
16.
go back to reference Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 26(1):142–152, 15973352, 10.1038/sj.jcbfm.9600174, 1:CAS:528:DC%2BD28XmsFamuw%3D%3DCrossRefPubMed Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 26(1):142–152, 15973352, 10.1038/sj.jcbfm.9600174, 1:CAS:528:DC%2BD28XmsFamuw%3D%3DCrossRefPubMed
17.
go back to reference Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464, 3260686, 10.1126/science.3260686, 1:CAS:528:DyaL1cXltVyiu78%3DCrossRefPubMed Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464, 3260686, 10.1126/science.3260686, 1:CAS:528:DyaL1cXltVyiu78%3DCrossRefPubMed
18.
go back to reference Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629, 7938003, 10.1073/pnas.91.22.10625, 1:CAS:528:DyaK2cXmvFentr8%3DPubMedCentralCrossRefPubMed Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629, 7938003, 10.1073/pnas.91.22.10625, 1:CAS:528:DyaK2cXmvFentr8%3DPubMedCentralCrossRefPubMed
19.
go back to reference Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Schulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88(13):5829–5831, 2062861, 10.1073/pnas.88.13.5829, 1:CAS:528:DyaK3MXkvV2qsrg%3DPubMedCentralCrossRefPubMed Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Schulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88(13):5829–5831, 2062861, 10.1073/pnas.88.13.5829, 1:CAS:528:DyaK3MXkvV2qsrg%3DPubMedCentralCrossRefPubMed
20.
go back to reference Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 12(4):584–592, 1618937, 10.1038/jcbfm.1992.82, 1:CAS:528:DyaK38Xls1ynsL8%3DCrossRefPubMed Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 12(4):584–592, 1618937, 10.1038/jcbfm.1992.82, 1:CAS:528:DyaK38Xls1ynsL8%3DCrossRefPubMed
21.
go back to reference Frahm J, Kruger G, Merboldt KD, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35(2):143–148, 8622575, 10.1002/mrm.1910350202, 1:CAS:528:DyaK28XhsFGqurc%3DCrossRefPubMed Frahm J, Kruger G, Merboldt KD, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35(2):143–148, 8622575, 10.1002/mrm.1910350202, 1:CAS:528:DyaK28XhsFGqurc%3DCrossRefPubMed
22.
go back to reference Mangia S, Garreffa G, Bianciardi M, Giove F, Di Salle F, Maraviglia B (2003) The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 118(1):7–10, 12676131, 10.1016/S0306-4522(02)00792-3, 1:CAS:528:DC%2BD3sXisFSgsrk%3DCrossRefPubMed Mangia S, Garreffa G, Bianciardi M, Giove F, Di Salle F, Maraviglia B (2003) The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 118(1):7–10, 12676131, 10.1016/S0306-4522(02)00792-3, 1:CAS:528:DC%2BD3sXisFSgsrk%3DCrossRefPubMed
23.
go back to reference Mangia S, Giove F, Bianciardi M, Di Salle F, Garreffa G, Maraviglia B (2003) Issues concerning the construction of a metabolic model for neuronal activation. J Neurosci Res 71(4):463–467, 12548701, 10.1002/jnr.10531, 1:CAS:528:DC%2BD3sXptVKhtQ%3D%3DCrossRefPubMed Mangia S, Giove F, Bianciardi M, Di Salle F, Garreffa G, Maraviglia B (2003) Issues concerning the construction of a metabolic model for neuronal activation. J Neurosci Res 71(4):463–467, 12548701, 10.1002/jnr.10531, 1:CAS:528:DC%2BD3sXptVKhtQ%3D%3DCrossRefPubMed
24.
go back to reference Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4):269–286, 11334636, 10.1016/S0010-4825(01)00006-3, 1:STN:280:DC%2BD3M3jvFynsg%3D%3DCrossRefPubMed Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4):269–286, 11334636, 10.1016/S0010-4825(01)00006-3, 1:STN:280:DC%2BD3M3jvFynsg%3D%3DCrossRefPubMed
25.
go back to reference Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van Huffel S (2002) Improved Lanczos algorithms for blackbox MRS data quantitation. J Magn Reson 157(2):292–297, 12323148, 10.1006/jmre.2002.2593, 1:CAS:528:DC%2BD38XntFShtL8%3DCrossRefPubMed Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van Huffel S (2002) Improved Lanczos algorithms for blackbox MRS data quantitation. J Magn Reson 157(2):292–297, 12323148, 10.1006/jmre.2002.2593, 1:CAS:528:DC%2BD38XntFShtL8%3DCrossRefPubMed
26.
go back to reference Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 18(1):1–13, 15660450, 10.1002/nbm.895, 1:CAS:528:DC%2BD2MXis1Wlt7o%3DCrossRefPubMed Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 18(1):1–13, 15660450, 10.1002/nbm.895, 1:CAS:528:DC%2BD2MXis1Wlt7o%3DCrossRefPubMed
27.
go back to reference Graveron-Demilly D, Diop A, Briguet A, Fenet B (1993) Product-operator algebra for strongly coupled spin systems. J Magn Reson A 101(3):233–239, 10.1006/jmra.1993.1038, 1:CAS:528:DyaK3sXis1Gis7w%3DCrossRef Graveron-Demilly D, Diop A, Briguet A, Fenet B (1993) Product-operator algebra for strongly coupled spin systems. J Magn Reson A 101(3):233–239, 10.1006/jmra.1993.1038, 1:CAS:528:DyaK3sXis1Gis7w%3DCrossRef
28.
go back to reference Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153, 10861994, 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V, 1:CAS:528:DC%2BD3cXksFSgtL8%3DCrossRefPubMed Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153, 10861994, 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V, 1:CAS:528:DC%2BD3cXksFSgtL8%3DCrossRefPubMed
29.
go back to reference Tofts PS (2004) Spectroscopy: 1H metabolite concentrations. In: Tofts P (ed) Quantitative MRI of the brain: measuring changes caused by disease, edn. John Wiley, Chichester, pp 299–340 Tofts PS (2004) Spectroscopy: 1H metabolite concentrations. In: Tofts P (ed) Quantitative MRI of the brain: measuring changes caused by disease, edn. John Wiley, Chichester, pp 299–340
30.
go back to reference Kugel H, Roth B, Pillekamp F, Krüger K, Schulte O, von Gontard A, Benz-Bohm G (2003) Proton spectroscopic metabolite signal relaxation times in preterm infants: a prerequisite for quantitative spectroscopy in infant brain. J Magn Reson Imaging 17(6):634–640, 12766891, 10.1002/jmri.10315CrossRefPubMed Kugel H, Roth B, Pillekamp F, Krüger K, Schulte O, von Gontard A, Benz-Bohm G (2003) Proton spectroscopic metabolite signal relaxation times in preterm infants: a prerequisite for quantitative spectroscopy in infant brain. J Magn Reson Imaging 17(6):634–640, 12766891, 10.1002/jmri.10315CrossRefPubMed
31.
go back to reference Ishii K, Sasaki M, Kitagaki H, Sakamoto S, Yamaji S, Maeda K (1996) Regional difference in cerebral blood flow and oxidative metabolism in human cortex. J Nucl Med 37(7):1086–1088, 8965174, 1:STN:280:DyaK283mvVWgsg%3D%3DPubMed Ishii K, Sasaki M, Kitagaki H, Sakamoto S, Yamaji S, Maeda K (1996) Regional difference in cerebral blood flow and oxidative metabolism in human cortex. J Nucl Med 37(7):1086–1088, 8965174, 1:STN:280:DyaK283mvVWgsg%3D%3DPubMed
32.
go back to reference Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137, 363301, 1:CAS:528:DyaE1MXotlWqsQ%3D%3DCrossRefPubMed Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137, 363301, 1:CAS:528:DyaE1MXotlWqsQ%3D%3DCrossRefPubMed
33.
go back to reference Sarchielli P, Tarducci R, Preciutti O, Gobbi G, Pelliccioli GP, Stipa G, Alberti A, Capocchi G (2005) Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage 24(4):1025–1031, 15670679, 10.1016/j.neuroimage.2004.11.005CrossRefPubMed Sarchielli P, Tarducci R, Preciutti O, Gobbi G, Pelliccioli GP, Stipa G, Alberti A, Capocchi G (2005) Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage 24(4):1025–1031, 15670679, 10.1016/j.neuroimage.2004.11.005CrossRefPubMed
34.
go back to reference Kaufmann P, Shungu DC, Sano MC, Jhung S, Engelstad K, Mitsis E, Mao X, Shanske S, Hirano M, DiMauro S, De Vivo DC (2004) Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology 62(8):1297–1302, 15111665, 1:CAS:528:DC%2BD2cXivV2jsLk%3DCrossRefPubMed Kaufmann P, Shungu DC, Sano MC, Jhung S, Engelstad K, Mitsis E, Mao X, Shanske S, Hirano M, DiMauro S, De Vivo DC (2004) Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology 62(8):1297–1302, 15111665, 1:CAS:528:DC%2BD2cXivV2jsLk%3DCrossRefPubMed
35.
go back to reference Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20(4-5):291–299, 9778565, 10.1159/000017324, 1:CAS:528:DyaK1cXntl2lsLc%3DCrossRefPubMed Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20(4-5):291–299, 9778565, 10.1159/000017324, 1:CAS:528:DyaK1cXntl2lsLc%3DCrossRefPubMed
36.
go back to reference Tong CK, Chesler M (2000) Modulation of spreading depression by changes in extracellular pH. J Neurophysiol 84(5):2449–2457, 11067987, 1:STN:280:DC%2BD3M%2FmvFOjsA%3D%3DPubMed Tong CK, Chesler M (2000) Modulation of spreading depression by changes in extracellular pH. J Neurophysiol 84(5):2449–2457, 11067987, 1:STN:280:DC%2BD3M%2FmvFOjsA%3D%3DPubMed
37.
go back to reference Merboldt KD, Bruhn H, Hänicke W, Michaelis T, Frahm J (1992) Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med 25(1):187–194, 1593951, 10.1002/mrm.1910250119, 1:CAS:528:DyaK38XksVeltrw%3DCrossRefPubMed Merboldt KD, Bruhn H, Hänicke W, Michaelis T, Frahm J (1992) Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med 25(1):187–194, 1593951, 10.1002/mrm.1910250119, 1:CAS:528:DyaK38XksVeltrw%3DCrossRefPubMed
38.
go back to reference Boucard CC, Mostert JP, Cornelissen FW, De Keyser J, Oudkerk M, Sijens PE (2005) Visual stimulation, 1H MR spectroscopy and fMRI of the human visual pathways. Eur Radiol 15(1):47–52, 15480690, 10.1007/s00330-004-2494-yCrossRefPubMed Boucard CC, Mostert JP, Cornelissen FW, De Keyser J, Oudkerk M, Sijens PE (2005) Visual stimulation, 1H MR spectroscopy and fMRI of the human visual pathways. Eur Radiol 15(1):47–52, 15480690, 10.1007/s00330-004-2494-yCrossRefPubMed
39.
go back to reference Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Giove F, Maraviglia B, Ugurbil K (2006) Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at T T. Magn Reson Imaging 24(4):343–348, 16677939, 10.1016/j.mri.2005.12.023CrossRefPubMed Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Giove F, Maraviglia B, Ugurbil K (2006) Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at T T. Magn Reson Imaging 24(4):343–348, 16677939, 10.1016/j.mri.2005.12.023CrossRefPubMed
40.
go back to reference Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-sate level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063, 17033694, 1:CAS:528:DC%2BD2sXlvVSkt7k%3DPubMed Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-sate level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063, 17033694, 1:CAS:528:DC%2BD2sXlvVSkt7k%3DPubMed
41.
go back to reference Mangia S, Tkac I, Logothetis NK, Gruetter R, Van de Moortele PF, Ugurbil K (2007) Dynamics of lactate concentration and blood oxygen level-dependent effect in the human visual cortex during repeated identical stimuli. J Neurosci Res 85(15):3340–3346, 17526022, 1:CAS:528:DC%2BD1cXjtFClsb4%3DPubMed Mangia S, Tkac I, Logothetis NK, Gruetter R, Van de Moortele PF, Ugurbil K (2007) Dynamics of lactate concentration and blood oxygen level-dependent effect in the human visual cortex during repeated identical stimuli. J Neurosci Res 85(15):3340–3346, 17526022, 1:CAS:528:DC%2BD1cXjtFClsb4%3DPubMed
Metadata
Title
Does visual cortex lactate increase following photic stimulation in migraine without aura patients? A functional 1H-MRS study
Authors
Harmen Reyngoudt
Koen Paemeleire
Anneloor Dierickx
Benedicte Descamps
Pieter Vandemaele
Yves De Deene
Eric Achten
Publication date
01-06-2011
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 3/2011
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1007/s10194-011-0295-7

Other articles of this Issue 3/2011

The Journal of Headache and Pain 3/2011 Go to the issue