Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 4/2018

01-08-2018 | Research Article

Click-Evoked Auditory Efferent Activity: Rate and Level Effects

Authors: Sriram Boothalingam, Julianne Kurke, Sumitrajit Dhar

Published in: Journal of the Association for Research in Otolaryngology | Issue 4/2018

Login to get access

Abstract

There currently are no standardized protocols to evaluate auditory efferent function in humans. Typical tests use broadband noise to activate the efferents, but only test the contralateral efferent pathway, risk activating the middle ear muscle reflex (MEMR), and are laborious for clinical use. In an attempt to develop a clinical test of bilateral auditory efferent function, we have designed a method that uses clicks to evoke efferent activity, obtain click-evoked otoacoustic emissions (CEOAEs), and monitor MEMR. This allows for near-simultaneous estimation of cochlear and efferent function. In the present study, we manipulated click level (60, 70, and 80 dB peak-equivalent sound pressure level [peSPL]) and rate (40, 50, and 62.5 Hz) to identify an optimal rate-level combination that evokes measurable efferent modulation of CEOAEs. Our findings (n = 58) demonstrate that almost all click levels and rates used caused significant inhibition of CEOAEs, with a significant interaction between level and rate effects. Predictably, bilateral activation produced greater inhibition compared to stimulating the efferents only in the ipsilateral or contralateral ear. In examining the click rate-level effects during bilateral activation in greater detail, we observed a 1-dB inhibition of CEOAE level for each 10-dB increase in click level, with rate held constant at 62.5 Hz. Similarly, a 10-Hz increase in rate produced a 0.74-dB reduction in CEOAE level, with click level held constant at 80 dB peSPL. The effect size (Cohen’s d) was small for either monaural condition and medium for bilateral, faster-rate, and higher-level conditions. We were also able to reliably extract CEOAEs from efferent eliciting clicks. We conclude that clicks can indeed be profitably employed to simultaneously evaluate cochlear health using CEOAEs as well as their efferent modulation. Furthermore, using bilateral clicks allows the evaluation of both the crossed and uncrossed elements of the auditory efferent nervous system, while yielding larger, more discernible, inhibition of the CEOAEs relative to either ipsilateral or contralateral condition.
Literature
go back to reference Abdala C, Dhar S, Ahmadi M, Luo P (2014) Aging of the medial olivocochlear reflex and associations with speech perception. J Acoust Soc Am 135(2):755–765CrossRef Abdala C, Dhar S, Ahmadi M, Luo P (2014) Aging of the medial olivocochlear reflex and associations with speech perception. J Acoust Soc Am 135(2):755–765CrossRef
go back to reference Backus BC, Guinan JJ (2006) Time-course of the human medial olivocochlear reflex. J Acoust Soc Am 119(5):2889–2904PubMedCrossRef Backus BC, Guinan JJ (2006) Time-course of the human medial olivocochlear reflex. J Acoust Soc Am 119(5):2889–2904PubMedCrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol 57:289–300
go back to reference Berlin CI, Hood LJ, Wen H, Szabo P, Cecola RP, Rigby P, Jackson DF (1993) Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear Res 71:1):1–1)11PubMedCrossRef Berlin CI, Hood LJ, Wen H, Szabo P, Cecola RP, Rigby P, Jackson DF (1993) Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear Res 71:1):1–1)11PubMedCrossRef
go back to reference Berlin CI, Hood LJ, Hurley AE, Wen H, Kemp DT (1995) Binaural noise suppresses linear click-evoked otoacoustic emissions more than ipsilateral or contralateral noise. Hear Res 87(1):96–103PubMedCrossRef Berlin CI, Hood LJ, Hurley AE, Wen H, Kemp DT (1995) Binaural noise suppresses linear click-evoked otoacoustic emissions more than ipsilateral or contralateral noise. Hear Res 87(1):96–103PubMedCrossRef
go back to reference de Boer J, Thornton ARD, Krumbholz K (2012) What is the role of the medial olivocochlear system in speech-in-noise processing? J Neurophysiol 107(5):1301–1312PubMedCrossRef de Boer J, Thornton ARD, Krumbholz K (2012) What is the role of the medial olivocochlear system in speech-in-noise processing? J Neurophysiol 107(5):1301–1312PubMedCrossRef
go back to reference Boothalingam S, Purcell DW (2015) Influence of the stimulus presentation rate on medial olivocochlear system assays. J Acoust Soc Am 137(2):724–732PubMedCrossRef Boothalingam S, Purcell DW (2015) Influence of the stimulus presentation rate on medial olivocochlear system assays. J Acoust Soc Am 137(2):724–732PubMedCrossRef
go back to reference Boothalingam S, Purcell D, Scollie S (2014) Influence of 100 Hz amplitude modulation on the human medial olivocochlear reflex. Neurosci Lett 580:56–61PubMedCrossRef Boothalingam S, Purcell D, Scollie S (2014) Influence of 100 Hz amplitude modulation on the human medial olivocochlear reflex. Neurosci Lett 580:56–61PubMedCrossRef
go back to reference Boothalingam S, Allan C, Allen P, Purcell D (2015) Cochlear delay and medial olivocochlear functioning in children with suspected auditory processing disorder. PLoS One 10(8):1–18CrossRef Boothalingam S, Allan C, Allen P, Purcell D (2015) Cochlear delay and medial olivocochlear functioning in children with suspected auditory processing disorder. PLoS One 10(8):1–18CrossRef
go back to reference Boothalingam S, Macpherson E, Allan C, Allen P, Purcell D (2016) Localization-in-noise and binaural medial olivocochlear functioning in children and young adults. J Acoust Soc Am 139(1):247–262PubMedCrossRef Boothalingam S, Macpherson E, Allan C, Allen P, Purcell D (2016) Localization-in-noise and binaural medial olivocochlear functioning in children and young adults. J Acoust Soc Am 139(1):247–262PubMedCrossRef
go back to reference Brashears SM, Morlet TG, Berlin CI, Hood LJ (2003) Olivocochlear efferent suppression in classical musicians. J Am Acad Audiol 14(6):314–324PubMed Brashears SM, Morlet TG, Berlin CI, Hood LJ (2003) Olivocochlear efferent suppression in classical musicians. J Am Acad Audiol 14(6):314–324PubMed
go back to reference Brown MC, Kujawa SG, Duca ML (1998) Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise. J Neurophysiol 79(6):3077–3087PubMedCrossRef Brown MC, Kujawa SG, Duca ML (1998) Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise. J Neurophysiol 79(6):3077–3087PubMedCrossRef
go back to reference Brown MC, de Venecia RK, Guinan JJ (2003) Responses of medial olivocochlear neurons. Exp Brain Res 153(4):491–498PubMedCrossRef Brown MC, de Venecia RK, Guinan JJ (2003) Responses of medial olivocochlear neurons. Exp Brain Res 153(4):491–498PubMedCrossRef
go back to reference Charaziak KK, Shera CA (2015) Measuring temporal suppression of clicked-evoked otoacoustic emissions at high frequencies. In Association for Research in Otolaryngology Mid-Winter Meeting Abs, p 308 Charaziak KK, Shera CA (2015) Measuring temporal suppression of clicked-evoked otoacoustic emissions at high frequencies. In Association for Research in Otolaryngology Mid-Winter Meeting Abs, p 308
go back to reference Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990a) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43(2–3):251–261PubMedCrossRef Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990a) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43(2–3):251–261PubMedCrossRef
go back to reference Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990b) Effect of contralateral auditory-stimuli on active cochlear micromechanical properties in human-subjects. Hear Res 43:251–262PubMedCrossRef Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990b) Effect of contralateral auditory-stimuli on active cochlear micromechanical properties in human-subjects. Hear Res 43:251–262PubMedCrossRef
go back to reference Deeter R, Abel R, Calandruccio L, Dhar S (2009) Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. J Acoust Soc Am 126(5):2413–2424PubMedPubMedCentralCrossRef Deeter R, Abel R, Calandruccio L, Dhar S (2009) Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. J Acoust Soc Am 126(5):2413–2424PubMedPubMedCentralCrossRef
go back to reference Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27(15):41464153CrossRef Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27(15):41464153CrossRef
go back to reference Eggermont JJ, Spoor A (1973) Cochlear adaptation in guinea pigs. Quant Description Audiol 12(4):193–220 Eggermont JJ, Spoor A (1973) Cochlear adaptation in guinea pigs. Quant Description Audiol 12(4):193–220
go back to reference Feeney MP, Keefe DH (1999) Acoustic reflex detection using wide-band acoustic reflectance, admittance, and power measurements. J Speech, Lang Hear Res 42(5):1029–1041CrossRef Feeney MP, Keefe DH (1999) Acoustic reflex detection using wide-band acoustic reflectance, admittance, and power measurements. J Speech, Lang Hear Res 42(5):1029–1041CrossRef
go back to reference Ferragamo MJ, Golding NL, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79(1):51–63PubMedCrossRef Ferragamo MJ, Golding NL, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79(1):51–63PubMedCrossRef
go back to reference Garinis AC, Glattke T, Cone-Wesson BK (2008) TEOAE suppression in adults with learning disabilities. Int J Audiol 47(10):607–614PubMedCrossRef Garinis AC, Glattke T, Cone-Wesson BK (2008) TEOAE suppression in adults with learning disabilities. Int J Audiol 47(10):607–614PubMedCrossRef
go back to reference Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH (2009) High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am 125(2):1014–1032PubMedPubMedCentralCrossRef Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH (2009) High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am 125(2):1014–1032PubMedPubMedCentralCrossRef
go back to reference Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27(6):589–607PubMedCrossRef Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27(6):589–607PubMedCrossRef
go back to reference Guinan JJ (2014) Olivocochlear efferent function: issues regarding methods and the interpretation of results. Front Syst Neurosci 8:142PubMedCrossRef Guinan JJ (2014) Olivocochlear efferent function: issues regarding methods and the interpretation of results. Front Syst Neurosci 8:142PubMedCrossRef
go back to reference Guinan JJ, Backus BC, Lilaonitkul W, Aharonson V (2003) Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. J Assoc Res Otolaryngol 4(4):521–540PubMedPubMedCentralCrossRef Guinan JJ, Backus BC, Lilaonitkul W, Aharonson V (2003) Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. J Assoc Res Otolaryngol 4(4):521–540PubMedPubMedCentralCrossRef
go back to reference Hood LJ, Berlin CI, Bordelon J, Rose K (2003) Patients with auditory neuropathy/dys-synchrony lack efferent suppression of transient evoked otoacoustic emissions. J Am Acad Audiol 14(6):302–313PubMed Hood LJ, Berlin CI, Bordelon J, Rose K (2003) Patients with auditory neuropathy/dys-synchrony lack efferent suppression of transient evoked otoacoustic emissions. J Am Acad Audiol 14(6):302–313PubMed
go back to reference Kiang N (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Press, Cambridge, MA Kiang N (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Press, Cambridge, MA
go back to reference Kim SH, Frisina DR, Frisina RD (2002) Effects of age on contralateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing. Audiol Neurotol 7(6):348–357CrossRef Kim SH, Frisina DR, Frisina RD (2002) Effects of age on contralateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing. Audiol Neurotol 7(6):348–357CrossRef
go back to reference Kumar A, Vanaja CS (2004) Functioning of olivocochlear bundle and speech perception in noise. Ear Hear 25(2):142–146PubMedCrossRef Kumar A, Vanaja CS (2004) Functioning of olivocochlear bundle and speech perception in noise. Ear Hear 25(2):142–146PubMedCrossRef
go back to reference Liberman MC (1988) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60(5):1779–1798PubMedCrossRef Liberman MC (1988) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60(5):1779–1798PubMedCrossRef
go back to reference Lilaonitkul W, Guinan JJ (2009) Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths. J Assoc Res Otolaryngol 10(3):459–470PubMedPubMedCentralCrossRef Lilaonitkul W, Guinan JJ (2009) Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths. J Assoc Res Otolaryngol 10(3):459–470PubMedPubMedCentralCrossRef
go back to reference Lilaonitkul W, Guinan JJ (2012) Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. J Neurophysiol 107(6):1598–1611PubMedCrossRef Lilaonitkul W, Guinan JJ (2012) Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. J Neurophysiol 107(6):1598–1611PubMedCrossRef
go back to reference Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20(12):4701–4707PubMedCrossRef Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20(12):4701–4707PubMedCrossRef
go back to reference Marks KL, Siegel JH (2017) Differentiating middle ear and medial olivocochlear effects on transient-evoked otoacoustic emissions. J Assoc Res Otolaryngol 121:1588–1514 Marks KL, Siegel JH (2017) Differentiating middle ear and medial olivocochlear effects on transient-evoked otoacoustic emissions. J Assoc Res Otolaryngol 121:1588–1514
go back to reference Mertes IB, Goodman SS (2015) Within- and across-subject variability of repeated measurements of medial olivocochlear-induced changes in transient-evoked otoacoustic emissions. Ear Hear 37(2): e72–e84 Mertes IB, Goodman SS (2015) Within- and across-subject variability of repeated measurements of medial olivocochlear-induced changes in transient-evoked otoacoustic emissions. Ear Hear 37(2): e72–e84
go back to reference Mishra SK, Lutman ME (2013) Repeatability of click-evoked otoacoustic emission-based medial olivocochlear efferent assay. Ear Hear 34(6):789–798PubMedCrossRef Mishra SK, Lutman ME (2013) Repeatability of click-evoked otoacoustic emission-based medial olivocochlear efferent assay. Ear Hear 34(6):789–798PubMedCrossRef
go back to reference Mott JB, Norton SJ, Neely ST, Warr BW (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38(3):229–242PubMedCrossRef Mott JB, Norton SJ, Neely ST, Warr BW (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38(3):229–242PubMedCrossRef
go back to reference Muchnik C, Ari-Even-Roth D, Othman-Jebara R, Putter-Katz H, Shabtai EL, Hildesheimer M (2004) Reduced medial olivocochlear bundle system function in children with auditory processing disorders. Audiol Neurotol 9(2):107–114CrossRef Muchnik C, Ari-Even-Roth D, Othman-Jebara R, Putter-Katz H, Shabtai EL, Hildesheimer M (2004) Reduced medial olivocochlear bundle system function in children with auditory processing disorders. Audiol Neurotol 9(2):107–114CrossRef
go back to reference Norton SJ, Gorga MP, Widen JE, Folsom RC, Sininger Y, Cone-Wesson BK, Vohr BR, Fletcher KA (2000) Identification of neonatal hearing impairment: summary and recommendations. Ear Hear 21(5):529–535PubMedCrossRef Norton SJ, Gorga MP, Widen JE, Folsom RC, Sininger Y, Cone-Wesson BK, Vohr BR, Fletcher KA (2000) Identification of neonatal hearing impairment: summary and recommendations. Ear Hear 21(5):529–535PubMedCrossRef
go back to reference Oertel D, Wright S, Cao X-J, Ferragamo M, Bal R (2011) The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus. Hear Res 276(1–2):61–69PubMedCrossRef Oertel D, Wright S, Cao X-J, Ferragamo M, Bal R (2011) The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus. Hear Res 276(1–2):61–69PubMedCrossRef
go back to reference Peake WT, Goldstein MH Jr, Kiang NYS (1962) Responses of the auditory nerve to repetitive acoustic stimuli. J Acoust Soc Am 34(5):562–570CrossRef Peake WT, Goldstein MH Jr, Kiang NYS (1962) Responses of the auditory nerve to repetitive acoustic stimuli. J Acoust Soc Am 34(5):562–570CrossRef
go back to reference Perrot X, Collet L (2013) Function and plasticity of the medial olivocochlear system in musicians: a review. Hear Res 308:27–40PubMedCrossRef Perrot X, Collet L (2013) Function and plasticity of the medial olivocochlear system in musicians: a review. Hear Res 308:27–40PubMedCrossRef
go back to reference Pfeiffer RR, Kim DO (1972) Response patterns of single cochlear nerve fibers to click stimuli: descriptions for cat. J Acoust Soc Am 52(6B):1669–1677PubMedCrossRef Pfeiffer RR, Kim DO (1972) Response patterns of single cochlear nerve fibers to click stimuli: descriptions for cat. J Acoust Soc Am 52(6B):1669–1677PubMedCrossRef
go back to reference Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84(2):141–219PubMedCrossRef Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84(2):141–219PubMedCrossRef
go back to reference Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurons in the guinea pig cochlea. Hear Res 20(1):63–77PubMedCrossRef Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurons in the guinea pig cochlea. Hear Res 20(1):63–77PubMedCrossRef
go back to reference Robles L, Ruggero MA, Rich NC (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input–output functions, tuning curves, and response phases. J Acoust Soc Am 80(5):1364–1374PubMedCrossRef Robles L, Ruggero MA, Rich NC (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input–output functions, tuning curves, and response phases. J Acoust Soc Am 80(5):1364–1374PubMedCrossRef
go back to reference Rosnow RL, Rosenthal R (1996) Computing contrasts, effect sizes, and counternulls on other people’s published data: general procedures for research consumers. Psychol Methods 1(4):331–340 h CrossRef Rosnow RL, Rosenthal R (1996) Computing contrasts, effect sizes, and counternulls on other people’s published data: general procedures for research consumers. Psychol Methods 1(4):331–340 h CrossRef
go back to reference Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In popper, A. N. And fay, R. R., editors, The Mammalian Auditory pathway. Neurophysiology:34–93 Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In popper, A. N. And fay, R. R., editors, The Mammalian Auditory pathway. Neurophysiology:34–93
go back to reference Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2 Pt 1):782–798PubMedCrossRef Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2 Pt 1):782–798PubMedCrossRef
go back to reference Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93(6):3333–3352PubMedCrossRef Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93(6):3333–3352PubMedCrossRef
go back to reference Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282(4):595–616PubMedCrossRef Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282(4):595–616PubMedCrossRef
go back to reference Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303(2):267–285PubMedCrossRef Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303(2):267–285PubMedCrossRef
go back to reference de Venecia RK, Liberman MC, Guinan JJ, Brown MC (2005) Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 487(4):345–360PubMedPubMedCentralCrossRef de Venecia RK, Liberman MC, Guinan JJ, Brown MC (2005) Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 487(4):345–360PubMedPubMedCentralCrossRef
go back to reference Veuillet E, Collet L, Duclaux R (1991) Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J Neurophysiol 65(3):724–735PubMedCrossRef Veuillet E, Collet L, Duclaux R (1991) Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J Neurophysiol 65(3):724–735PubMedCrossRef
go back to reference Walsh KP, Pasanen EG, McFadden D (2015) Changes in otoacoustic emissions during selective auditory and visual attention. J Acoust Soc Am 137(5):2737–2757PubMedPubMedCentralCrossRef Walsh KP, Pasanen EG, McFadden D (2015) Changes in otoacoustic emissions during selective auditory and visual attention. J Acoust Soc Am 137(5):2737–2757PubMedPubMedCentralCrossRef
go back to reference Wilson US, Sadler KM, Hancock KE, Guinan JJ, Lichtenhan JT (2017) Efferent inhibition strength is a physiological correlate of hyperacusis in children with autism spectrum disorder. J Neurophysiol 118(2):1164–1172PubMedPubMedCentralCrossRef Wilson US, Sadler KM, Hancock KE, Guinan JJ, Lichtenhan JT (2017) Efferent inhibition strength is a physiological correlate of hyperacusis in children with autism spectrum disorder. J Neurophysiol 118(2):1164–1172PubMedPubMedCentralCrossRef
go back to reference Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57(4):1002–1021PubMedCrossRef Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57(4):1002–1021PubMedCrossRef
go back to reference Yoshie N (1968) Auditory nerve action potential responses to clicks in man. Laryngoscope 78(2):198–215PubMedCrossRef Yoshie N (1968) Auditory nerve action potential responses to clicks in man. Laryngoscope 78(2):198–215PubMedCrossRef
go back to reference Zhao W, Dewey JB, Boothalingam S, Dhar S (2015) Efferent modulation of stimulus frequency otoacoustic emission fine structure. Front Syst Neurosci 9:168PubMedPubMedCentral Zhao W, Dewey JB, Boothalingam S, Dhar S (2015) Efferent modulation of stimulus frequency otoacoustic emission fine structure. Front Syst Neurosci 9:168PubMedPubMedCentral
Metadata
Title
Click-Evoked Auditory Efferent Activity: Rate and Level Effects
Authors
Sriram Boothalingam
Julianne Kurke
Sumitrajit Dhar
Publication date
01-08-2018
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 4/2018
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-018-0664-x

Other articles of this Issue 4/2018

Journal of the Association for Research in Otolaryngology 4/2018 Go to the issue