Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 5/2017

01-10-2017 | Research Article

Predictions of Speech Chimaera Intelligibility Using Auditory Nerve Mean-Rate and Spike-Timing Neural Cues

Authors: Michael R. Wirtzfeld, Rasha A. Ibrahim, Ian C. Bruce

Published in: Journal of the Association for Research in Otolaryngology | Issue 5/2017

Login to get access

Abstract

Perceptual studies of speech intelligibility have shown that slow variations of acoustic envelope (ENV) in a small set of frequency bands provides adequate information for good perceptual performance in quiet, whereas acoustic temporal fine-structure (TFS) cues play a supporting role in background noise. However, the implications for neural coding are prone to misinterpretation because the mean-rate neural representation can contain recovered ENV cues from cochlear filtering of TFS. We investigated ENV recovery and spike-time TFS coding using objective measures of simulated mean-rate and spike-timing neural representations of chimaeric speech, in which either the ENV or the TFS is replaced by another signal. We (a) evaluated the levels of mean-rate and spike-timing neural information for two categories of chimaeric speech, one retaining ENV cues and the other TFS; (b) examined the level of recovered ENV from cochlear filtering of TFS speech; (c) examined and quantified the contribution to recovered ENV from spike-timing cues using a lateral inhibition network (LIN); and (d) constructed linear regression models with objective measures of mean-rate and spike-timing neural cues and subjective phoneme perception scores from normal-hearing listeners. The mean-rate neural cues from the original ENV and recovered ENV partially accounted for perceptual score variability, with additional variability explained by the recovered ENV from the LIN-processed TFS speech. The best model predictions of chimaeric speech intelligibility were found when both the mean-rate and spike-timing neural cues were included, providing further evidence that spike-time coding of TFS cues is important for intelligibility when the speech envelope is degraded.
Literature
go back to reference Apoux F, Yoho SE, Youngdahl CL, Healy E (2013) Can envelope recovery account for speech recognition based on temporal fine structure? Proceedings of Meetings on Acoustics 19(1):050072CrossRef Apoux F, Yoho SE, Youngdahl CL, Healy E (2013) Can envelope recovery account for speech recognition based on temporal fine structure? Proceedings of Meetings on Acoustics 19(1):050072CrossRef
go back to reference Baer T, Moore BCJ, Gatehouse S (1993) Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: effects on intelligibility, quality, and response times. J Rehabil Res Dev 30(1):49–72PubMed Baer T, Moore BCJ, Gatehouse S (1993) Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: effects on intelligibility, quality, and response times. J Rehabil Res Dev 30(1):49–72PubMed
go back to reference Bentsen T, Harte JM, Dau T (2011) Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions. J Acoust Soc Am 129(6):3797–3807CrossRefPubMed Bentsen T, Harte JM, Dau T (2011) Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions. J Acoust Soc Am 129(6):3797–3807CrossRefPubMed
go back to reference Bondy J, Bruce IC, Becker S, Haykin S (2004) Predicting speech intelligibility from a population of neurons. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems 16. MIT Press, Cambridge, MA, pp 1409–1416 Bondy J, Bruce IC, Becker S, Haykin S (2004) Predicting speech intelligibility from a population of neurons. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems 16. MIT Press, Cambridge, MA, pp 1409–1416
go back to reference Bruce IC (2004) Physiological assessment of contrast-enhancing frequency shaping and multiband compression in hearing aids. Physiol Meas 25(4):945–956CrossRefPubMed Bruce IC (2004) Physiological assessment of contrast-enhancing frequency shaping and multiband compression in hearing aids. Physiol Meas 25(4):945–956CrossRefPubMed
go back to reference Bruce IC, Dinath F, Zeyl T (2007) Insights into optimal phonemic compression from a computational model of the auditory periphery. In: Auditory Signal Processing in Hearing-Impaired Listeners, Internationl Symposium on Audiological and Auditory Research (ISAAR), p 73–81 Bruce IC, Dinath F, Zeyl T (2007) Insights into optimal phonemic compression from a computational model of the auditory periphery. In: Auditory Signal Processing in Hearing-Impaired Listeners, Internationl Symposium on Audiological and Auditory Research (ISAAR), p 73–81
go back to reference Bruce IC, Léger AC, Moore BC, Lorenzi C (2013) Physiological prediction of masking release for normal-hearing and hearing-impaired listeners. Proceedings of Meetings on Acoustics: ICA 2013 Montreal, Acoustical Society of America 133(5):1–8 Bruce IC, Léger AC, Moore BC, Lorenzi C (2013) Physiological prediction of masking release for normal-hearing and hearing-impaired listeners. Proceedings of Meetings on Acoustics: ICA 2013 Montreal, Acoustical Society of America 133(5):1–8
go back to reference Bruce IC, Léger AC, Wirtzfeld MR, Moore BC, Lorenzi C (2015) Spike-time coding and auditory-nerve degeneration best explain speech intelligibility in noise for normal and near-normal low-frequency hearing. In: Abstracts of the 38th ARO Midwinter Research Meeting Bruce IC, Léger AC, Wirtzfeld MR, Moore BC, Lorenzi C (2015) Spike-time coding and auditory-nerve degeneration best explain speech intelligibility in noise for normal and near-normal low-frequency hearing. In: Abstracts of the 38th ARO Midwinter Research Meeting
go back to reference Burnham KP, Anderson DR (2002) Model selection and multimodel inference, a practical information-theoretic approach, 2nd edn. Springer, New York Burnham KP, Anderson DR (2002) Model selection and multimodel inference, a practical information-theoretic approach, 2nd edn. Springer, New York
go back to reference Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106(5):2719–2732CrossRefPubMed Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106(5):2719–2732CrossRefPubMed
go back to reference Davis MH, Johnsrude IS, Hervais-Adelman A, Taylor K, McGettigan C (2005) Lexcial information drives perceptual learning of distorted speech: evidence from the comprehension of noise-vocoded sentences. J Exp Psychol 134(2):222–241CrossRef Davis MH, Johnsrude IS, Hervais-Adelman A, Taylor K, McGettigan C (2005) Lexcial information drives perceptual learning of distorted speech: evidence from the comprehension of noise-vocoded sentences. J Exp Psychol 134(2):222–241CrossRef
go back to reference Delgutte B (1997) Auditory neural processing of speech. The handbook of phonetic sciences pp:507–538 Delgutte B (1997) Auditory neural processing of speech. The handbook of phonetic sciences pp:507–538
go back to reference Dinath F, Bruce IC (2008) Hearing aid gain prescriptions balance restoration of auditory nerve mean-rate and spike-timing representations of speech. In: Proceedings of 30th International IEEE Engineering in Medicine and Biology Conference, IEEE, Piscataway, NJ, p 1793–1796 Dinath F, Bruce IC (2008) Hearing aid gain prescriptions balance restoration of auditory nerve mean-rate and spike-timing representations of speech. In: Proceedings of 30th International IEEE Engineering in Medicine and Biology Conference, IEEE, Piscataway, NJ, p 1793–1796
go back to reference Drullman R (1995) Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am 97(1):585–592CrossRefPubMed Drullman R (1995) Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am 97(1):585–592CrossRefPubMed
go back to reference Dudley H (1939) The vocoder. Bell Labs Record 17:122–126 Dudley H (1939) The vocoder. Bell Labs Record 17:122–126
go back to reference Elhilali M, Chi T, Shamma SA (2003)A spectro-temporal modulation index (STMI) for assessment of speech intelligibility. Speech Comm 41(2, 3):331–348 Elhilali M, Chi T, Shamma SA (2003)A spectro-temporal modulation index (STMI) for assessment of speech intelligibility. Speech Comm 41(2, 3):331–348
go back to reference Flanagan JL (1980) Parametric coding of speech spectra. J Acoust Soc Am 68(2):412–419CrossRef Flanagan JL (1980) Parametric coding of speech spectra. J Acoust Soc Am 68(2):412–419CrossRef
go back to reference Fogerty D, Humes LE (2012)The role of vowel and consonant fundamental frequency, envelope, and temporal fine structure cues to the intelligibility of words and sentences. J Acoust Soc Am 131(2):1490–1501 Fogerty D, Humes LE (2012)The role of vowel and consonant fundamental frequency, envelope, and temporal fine structure cues to the intelligibility of words and sentences. J Acoust Soc Am 131(2):1490–1501
go back to reference Franck BAM, Sidonne C, van Kreveld-Bos GM, Dreschler WA, Verschuure H (1999) Evaluation of spectral enhancement in hearing aids, combined with phonemic compression. J Acoust Soc Am 106(3):1452–1464CrossRefPubMed Franck BAM, Sidonne C, van Kreveld-Bos GM, Dreschler WA, Verschuure H (1999) Evaluation of spectral enhancement in hearing aids, combined with phonemic compression. J Acoust Soc Am 106(3):1452–1464CrossRefPubMed
go back to reference French NR, Steinberg JC (1947) Factors governing the intelligibility of speech sounds. J Acoust Soc Am 19:90–119CrossRef French NR, Steinberg JC (1947) Factors governing the intelligibility of speech sounds. J Acoust Soc Am 19:90–119CrossRef
go back to reference Ghitza O (2001) On the upper cutoff frequency of the auditory critical-band envelope detectors in the context of speech perception. J Acoust Soc Am 110(3):1628–1640CrossRefPubMed Ghitza O (2001) On the upper cutoff frequency of the auditory critical-band envelope detectors in the context of speech perception. J Acoust Soc Am 110(3):1628–1640CrossRefPubMed
go back to reference Gilbert G, Lorenzi C (2006) The ability of listeners to use recovered envelope cues from speech fine structure. J Acoust Soc Am 119(4):2438–2444CrossRefPubMed Gilbert G, Lorenzi C (2006) The ability of listeners to use recovered envelope cues from speech fine structure. J Acoust Soc Am 119(4):2438–2444CrossRefPubMed
go back to reference Gilbert G, Bergeras I, Voillery D, Lorenzi C (2007) Effects of periodic interruptions on the intelligibility of speech based on temporal fine-structure or envelope cues. J Acoust Soc Am 122(3):1336–1339CrossRefPubMed Gilbert G, Bergeras I, Voillery D, Lorenzi C (2007) Effects of periodic interruptions on the intelligibility of speech based on temporal fine-structure or envelope cues. J Acoust Soc Am 122(3):1336–1339CrossRefPubMed
go back to reference Greenwood DD (1990) A cochlear frequency-position function for several species–29 years later. J Acoust Soc Am 87(6):2592–2605CrossRefPubMed Greenwood DD (1990) A cochlear frequency-position function for several species–29 years later. J Acoust Soc Am 87(6):2592–2605CrossRefPubMed
go back to reference Hartline HK (1974) Studies on the excitation and inhibition in the retina, Edited by Floyd Ratliff. The Rockefeller University Press, New York Hartline HK (1974) Studies on the excitation and inhibition in the retina, Edited by Floyd Ratliff. The Rockefeller University Press, New York
go back to reference Heinz MG, Swaminathan J (2009) Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech. J Assoc Res Otolaryngol 10(3):407–423CrossRefPubMedPubMedCentral Heinz MG, Swaminathan J (2009) Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech. J Assoc Res Otolaryngol 10(3):407–423CrossRefPubMedPubMedCentral
go back to reference Hines A, Harte N (2010) Speech intelligibility from image processing. Speech Comm 52(9):736–752CrossRef Hines A, Harte N (2010) Speech intelligibility from image processing. Speech Comm 52(9):736–752CrossRef
go back to reference Hines A, Harte N (2012) Speech intelligibility prediction using a neurogram similarity index measure. Speech Comm 54(2):306–320CrossRef Hines A, Harte N (2012) Speech intelligibility prediction using a neurogram similarity index measure. Speech Comm 54(2):306–320CrossRef
go back to reference Hopkins K, Moore BCJ, Stone MA (2010) The effects of the addition of low-level, low-noise noise on the intelligibility of sentences processed to remove temporal envelope information. J Acoust Soc Am 128(4):2150–2161CrossRefPubMed Hopkins K, Moore BCJ, Stone MA (2010) The effects of the addition of low-level, low-noise noise on the intelligibility of sentences processed to remove temporal envelope information. J Acoust Soc Am 128(4):2150–2161CrossRefPubMed
go back to reference Hossain ME, Jassim WA, Zilany MSA (2016) Reference-free assessment of speech intelligibility using bispectrum of an auditory neurogram. PLoS One 11(3):e0150,415CrossRef Hossain ME, Jassim WA, Zilany MSA (2016) Reference-free assessment of speech intelligibility using bispectrum of an auditory neurogram. PLoS One 11(3):e0150,415CrossRef
go back to reference Ibrahim RA, Bruce IC (2010) Effects of peripheral tuning on the auditory nerve’s representation of speech envelope and temporal fine structure cues. In: Lopez-Poveda EA, Palmer AR, Meddis R (eds) The neurophysiological basis of auditory perception. Springer, New York, pp 429–438CrossRef Ibrahim RA, Bruce IC (2010) Effects of peripheral tuning on the auditory nerve’s representation of speech envelope and temporal fine structure cues. In: Lopez-Poveda EA, Palmer AR, Meddis R (eds) The neurophysiological basis of auditory perception. Springer, New York, pp 429–438CrossRef
go back to reference Jackson BS, Carney LH (2005) The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence. J Assoc Res Otolaryngol 6(2):148–159CrossRefPubMedPubMedCentral Jackson BS, Carney LH (2005) The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence. J Assoc Res Otolaryngol 6(2):148–159CrossRefPubMedPubMedCentral
go back to reference Jassim WA, Zilany MS (2016) Speech quality assessment using 2d neurogram orthogonal moments. Speech Comm 80:34–48CrossRef Jassim WA, Zilany MS (2016) Speech quality assessment using 2d neurogram orthogonal moments. Speech Comm 80:34–48CrossRef
go back to reference Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68(4):1115–1122CrossRefPubMed Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68(4):1115–1122CrossRefPubMed
go back to reference Jørgensen S, Ewert SD, Dau T (2013) A multi-resolution envelope-power based model for speech intelligibility. J Acoust Soc Am 134(1):436–446CrossRefPubMed Jørgensen S, Ewert SD, Dau T (2013) A multi-resolution envelope-power based model for speech intelligibility. J Acoust Soc Am 134(1):436–446CrossRefPubMed
go back to reference Joris PX, Yin TCT (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91(1):215–232CrossRefPubMed Joris PX, Yin TCT (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91(1):215–232CrossRefPubMed
go back to reference Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577CrossRefPubMed Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577CrossRefPubMed
go back to reference Joris PX, Bergevin C, Kalluri R, McLaughlin M, Michelet P, van der Heijden M, Shera CA (2011) Frequency selectivity in old-world monkeys corroborates sharp cochlear tuning in humans. Proc Natl Acad Sci 108(42):17,516–17,520CrossRef Joris PX, Bergevin C, Kalluri R, McLaughlin M, Michelet P, van der Heijden M, Shera CA (2011) Frequency selectivity in old-world monkeys corroborates sharp cochlear tuning in humans. Proc Natl Acad Sci 108(42):17,516–17,520CrossRef
go back to reference Kates JM, Arehart KH (2014) The hearing-aid speech perception index (HASPI). Speech Comm 65:75–93CrossRef Kates JM, Arehart KH (2014) The hearing-aid speech perception index (HASPI). Speech Comm 65:75–93CrossRef
go back to reference Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. Res. Monogr. No. 35, M.I.T. Press, Cambridge Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. Res. Monogr. No. 35, M.I.T. Press, Cambridge
go back to reference Léger AC, Desloge JG, Braida LD, Swaminathan J (2015a) The role of recovered envelope cues in the identification of temporal fine-structure speech for hearing-impaired listeners. J Acoust Soc Am 137(1):505–508CrossRefPubMedPubMedCentral Léger AC, Desloge JG, Braida LD, Swaminathan J (2015a) The role of recovered envelope cues in the identification of temporal fine-structure speech for hearing-impaired listeners. J Acoust Soc Am 137(1):505–508CrossRefPubMedPubMedCentral
go back to reference Léger AC, Reed CM, Desloge JG, Swaminathan J, Braida LD (2015b)Consonant identification in noise using Hilbert-transform temporal fine-structure speech and recovered-envelope speech for listeners with normal and impaired hearing. J Acoust Soc Am 138(1):389–403 Léger AC, Reed CM, Desloge JG, Swaminathan J, Braida LD (2015b)Consonant identification in noise using Hilbert-transform temporal fine-structure speech and recovered-envelope speech for listeners with normal and impaired hearing. J Acoust Soc Am 138(1):389–403
go back to reference Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63(2):442–455CrossRefPubMed Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63(2):442–455CrossRefPubMed
go back to reference Logan BF Jr (1977) Information in the zero crossings of bandpass signals. Bell Syst Tech J 56(4):487–510CrossRef Logan BF Jr (1977) Information in the zero crossings of bandpass signals. Bell Syst Tech J 56(4):487–510CrossRef
go back to reference Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BCJ (2006) Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci U S A 103(49):18,866–18,869CrossRef Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BCJ (2006) Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci U S A 103(49):18,866–18,869CrossRef
go back to reference Lyzenga J, Festen JM, Houtgast T (2002) A speech enhancement scheme incorporating spectral expansion evaluated with simulated loss of frequency selectivity. J Acoust Soc Am 112(3):1145–1157CrossRefPubMed Lyzenga J, Festen JM, Houtgast T (2002) A speech enhancement scheme incorporating spectral expansion evaluated with simulated loss of frequency selectivity. J Acoust Soc Am 112(3):1145–1157CrossRefPubMed
go back to reference Mesgarani N, David SV, Fritz JB, Shamma SA (2008) Phoneme representation and classification in primary auditory cortex. J Acoust Soc Am 123(2):899–909CrossRefPubMed Mesgarani N, David SV, Fritz JB, Shamma SA (2008) Phoneme representation and classification in primary auditory cortex. J Acoust Soc Am 123(2):899–909CrossRefPubMed
go back to reference Miller RL, Schilling JR, Franck KR, Young ED (1997)Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers. J Acoust Soc Am 101(6):3602–3616 Miller RL, Schilling JR, Franck KR, Young ED (1997)Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers. J Acoust Soc Am 101(6):3602–3616
go back to reference Moore BCJ (2008) The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. J Assoc Res Otolaryngol 9(4):399–406CrossRefPubMedPubMedCentral Moore BCJ (2008) The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. J Assoc Res Otolaryngol 9(4):399–406CrossRefPubMedPubMedCentral
go back to reference Nie K, Stickney G, Zeng FG (2005) Encoding frequency modulation to improve cochlear implant performance in noise. IEEE Trans Biomed Eng 52(1):64–73CrossRefPubMed Nie K, Stickney G, Zeng FG (2005) Encoding frequency modulation to improve cochlear implant performance in noise. IEEE Trans Biomed Eng 52(1):64–73CrossRefPubMed
go back to reference Nie K, Atlas L, Rubinstein J (2008) Single sideband encoder for music coding in cochlear implants. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), p 4209–4212 Nie K, Atlas L, Rubinstein J (2008) Single sideband encoder for music coding in cochlear implants. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), p 4209–4212
go back to reference Paliwal K, Wójcicki K (2008) Effect of analysis window duration on speech intelligibilty. IEEE Signal Processing Letters 15:785–788CrossRef Paliwal K, Wójcicki K (2008) Effect of analysis window duration on speech intelligibilty. IEEE Signal Processing Letters 15:785–788CrossRef
go back to reference Pascal J, Bourgeade A, Lagier M, Legros C (1998) Linear and nonlinear model of the human middle ear. J Acoust Soc Am 104(3):1509–1516CrossRefPubMed Pascal J, Bourgeade A, Lagier M, Legros C (1998) Linear and nonlinear model of the human middle ear. J Acoust Soc Am 104(3):1509–1516CrossRefPubMed
go back to reference Rice SO (1973) Distortion produced by band limitation of an FM wave. Bell Syst Tech J 52(5):605–626CrossRef Rice SO (1973) Distortion produced by band limitation of an FM wave. Bell Syst Tech J 52(5):605–626CrossRef
go back to reference Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophsiology 30(4):769–793 Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophsiology 30(4):769–793
go back to reference Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans: Biol Sci 336(1278):367–373CrossRef Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans: Biol Sci 336(1278):367–373CrossRef
go back to reference Ruggero MA, Temchin AN (2005) Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci U S A 102(51):18,614–18,619CrossRef Ruggero MA, Temchin AN (2005) Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci U S A 102(51):18,614–18,619CrossRef
go back to reference Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66(2):470–479CrossRefPubMed Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66(2):470–479CrossRefPubMed
go back to reference Sachs MB, Young ED (1980) Effects of nonlinearities on speech encoding in the auditory nerve. J Acoust Soc Am 68(3):858–875CrossRefPubMed Sachs MB, Young ED (1980) Effects of nonlinearities on speech encoding in the auditory nerve. J Acoust Soc Am 68(3):858–875CrossRefPubMed
go back to reference Sachs MB, Voigt HF, Young ED (1983) Auditory nerve representation of vowels in background noise. J Neurophysiol 50(1):27–45PubMed Sachs MB, Voigt HF, Young ED (1983) Auditory nerve representation of vowels in background noise. J Neurophysiol 50(1):27–45PubMed
go back to reference Shamma SA (1985) Speech processing in the auditory system II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78(5):1622–1632 Shamma SA (1985) Speech processing in the auditory system II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78(5):1622–1632
go back to reference Shamma SA (1998) Spatial and temporal processing in the auditory system. In: Koch C, Segev I (eds) Methods of neuronal modeling: from ions to networks, 2nd edn. MIT Press, Cambridge, MA, pp 411–460 Shamma SA (1998) Spatial and temporal processing in the auditory system. In: Koch C, Segev I (eds) Methods of neuronal modeling: from ions to networks, 2nd edn. MIT Press, Cambridge, MA, pp 411–460 
go back to reference Shamma S, Lorenzi C (2013) On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoust Soc Am 133(5):2818–2833CrossRefPubMedPubMedCentral Shamma S, Lorenzi C (2013) On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoust Soc Am 133(5):2818–2833CrossRefPubMedPubMedCentral
go back to reference Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270(5234):303–304CrossRefPubMed Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270(5234):303–304CrossRefPubMed
go back to reference Shera CA, Guinan JJ Jr, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99(5):3318–3323CrossRefPubMedPubMedCentral Shera CA, Guinan JJ Jr, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99(5):3318–3323CrossRefPubMedPubMedCentral
go back to reference Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11(3):343–365CrossRefPubMedPubMedCentral Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11(3):343–365CrossRefPubMedPubMedCentral
go back to reference Simpson AM, Moore BCJ, Glasberg BR (1990) Spectral enhancement to improve the intelligibility of speech in noise for hearing-impaired listeners. Acta Otolaryngol Suppl 469:101–107PubMed Simpson AM, Moore BCJ, Glasberg BR (1990) Spectral enhancement to improve the intelligibility of speech in noise for hearing-impaired listeners. Acta Otolaryngol Suppl 469:101–107PubMed
go back to reference Sit JJ, Simonson AM, Oxenham AJ, Faltys MA, Sarpeshkar R (2007) A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information. IEEE Trans Biomed Eng 54(1):138–149CrossRefPubMed Sit JJ, Simonson AM, Oxenham AJ, Faltys MA, Sarpeshkar R (2007) A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information. IEEE Trans Biomed Eng 54(1):138–149CrossRefPubMed
go back to reference Stone MA, Moore BCJ (1992) Spectral feature enhancement for people with sensorineural hearing impairment: effects on speech intelligibility and quality. J Rehabil Res Dev 29(2):39–56CrossRefPubMed Stone MA, Moore BCJ (1992) Spectral feature enhancement for people with sensorineural hearing impairment: effects on speech intelligibility and quality. J Rehabil Res Dev 29(2):39–56CrossRefPubMed
go back to reference Swaminathan J, Heinz MG (2012) Psychophysiological analyses demonstrate the importance of neural envelope coding for speech perception in noise. J Neurosci 32(5):1747–1756CrossRefPubMedPubMedCentral Swaminathan J, Heinz MG (2012) Psychophysiological analyses demonstrate the importance of neural envelope coding for speech perception in noise. J Neurosci 32(5):1747–1756CrossRefPubMedPubMedCentral
go back to reference Swaminathan J, Reed CM, Desloge JG, Braida LD, Delhorne LA (2014) Consonant idenfication using temporal fine structure and recovered envelope cues. J Acoust Soc Am 135(4):2078–2090CrossRefPubMedPubMedCentral Swaminathan J, Reed CM, Desloge JG, Braida LD, Delhorne LA (2014) Consonant idenfication using temporal fine structure and recovered envelope cues. J Acoust Soc Am 135(4):2078–2090CrossRefPubMedPubMedCentral
go back to reference Tillman TW, Carhart R (1966)An expanded test for speech discrimination utilizing CNC monosyllabic words. Brooks Air Force Base, TX Northwestern University Auditory Test No. 6, USAF School of Aerospace Medicine Technical Report, p 1–12 Tillman TW, Carhart R (1966)An expanded test for speech discrimination utilizing CNC monosyllabic words. Brooks Air Force Base, TX Northwestern University Auditory Test No. 6, USAF School of Aerospace Medicine Technical Report, p 1–12
go back to reference Voelcker HB (1966) Toward a unified theory of modulation, part I: phase-envelope relationships. Proc IEEE 54(3):340–353CrossRef Voelcker HB (1966) Toward a unified theory of modulation, part I: phase-envelope relationships. Proc IEEE 54(3):340–353CrossRef
go back to reference Voigt HF, Sachs MB, Young ED (1982) Representation of whispered vowels in discharge patterns of auditory-nerve fibers. Hear Res 8(1):49–58CrossRefPubMed Voigt HF, Sachs MB, Young ED (1982) Representation of whispered vowels in discharge patterns of auditory-nerve fibers. Hear Res 8(1):49–58CrossRefPubMed
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefPubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefPubMed
go back to reference Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18(2):401–408CrossRef Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18(2):401–408CrossRef
go back to reference Wirtzfeld MW (2017) Predicting speech intelligibility and quality from model auditory nerve fiber mean-rate and spike-timing activity. PhD thesis, McMaster University, Hamilton, ON, Canada Wirtzfeld MW (2017) Predicting speech intelligibility and quality from model auditory nerve fiber mean-rate and spike-timing activity. PhD thesis, McMaster University, Hamilton, ON, Canada
go back to reference Young ED, Oertel D (2003) The cochlear nucleus. In: Shepherd GM (ed) Synaptic organization of the brain. Oxford University Press, NY, chap 4, p 125–163 Young ED, Oertel D (2003) The cochlear nucleus. In: Shepherd GM (ed) Synaptic organization of the brain. Oxford University Press, NY, chap 4, p 125–163
go back to reference Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66(5):1381–1403CrossRefPubMed Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66(5):1381–1403CrossRefPubMed
go back to reference Zeng FG, Nie K, Liu S, Stickney G, Rio ED, Kong YY, Chen H (2004) On the dichotomy in auditory perception between temporal envelope and fine structure cues. J Acoust Soc Am 116(3):1351–1354CrossRefPubMed Zeng FG, Nie K, Liu S, Stickney G, Rio ED, Kong YY, Chen H (2004) On the dichotomy in auditory perception between temporal envelope and fine structure cues. J Acoust Soc Am 116(3):1351–1354CrossRefPubMed
go back to reference Zilany MSA, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120(3):1446–1466CrossRefPubMed Zilany MSA, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120(3):1446–1466CrossRefPubMed
go back to reference Zilany MSA, Bruce IC (2007a) Predictions of speech intelligibility with a model of the normal and impaired auditory-periphery. In: Proceedings of 3rd International IEEE EMBS Conference on Neural Engineering, IEEE, Piscataway, NJ Zilany MSA, Bruce IC (2007a) Predictions of speech intelligibility with a model of the normal and impaired auditory-periphery. In: Proceedings of 3rd International IEEE EMBS Conference on Neural Engineering, IEEE, Piscataway, NJ
go back to reference Zilany MSA, Bruce IC (2007b) Representation of the vowel /ε/ in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122(1):402–417 Zilany MSA, Bruce IC (2007b) Representation of the vowel /ε/ in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122(1):402–417
go back to reference Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126(5):2390–2412CrossRefPubMedPubMedCentral Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126(5):2390–2412CrossRefPubMedPubMedCentral
go back to reference Zilany MSA, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135(1):283–286CrossRefPubMedPubMedCentral Zilany MSA, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135(1):283–286CrossRefPubMedPubMedCentral
Metadata
Title
Predictions of Speech Chimaera Intelligibility Using Auditory Nerve Mean-Rate and Spike-Timing Neural Cues
Authors
Michael R. Wirtzfeld
Rasha A. Ibrahim
Ian C. Bruce
Publication date
01-10-2017
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 5/2017
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-017-0627-7

Other articles of this Issue 5/2017

Journal of the Association for Research in Otolaryngology 5/2017 Go to the issue