Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 5/2015

01-10-2015 | Research Article

Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound

Authors: Nima Maftoon, W. Robert J. Funnell, Sam J. Daniel, Willem F. Decraemer

Published in: Journal of the Association for Research in Otolaryngology | Issue 5/2015

Login to get access

Abstract

We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses. The umbo response of the model is within the range of variability seen in the experimental data in terms of the low-frequency (i.e., well below the middle-ear resonance) magnitude and phase, the main resonance frequency and magnitude, and the roll-off slope and irregularities in the response above the resonance frequency, but is somewhat high for frequencies above the resonance frequency. At low frequencies, the ossicular axis of rotation of the model appears to correspond to the anatomical axis but the behaviour is more complex at high frequencies (i.e., above the pars-tensa break-up). The behaviour of the pars tensa in the model is similar to what is observed experimentally in terms of magnitudes, phases, the break-up frequency of the spatial vibration pattern, and the bandwidths of the high-frequency response features. A sensitivity analysis showed that the parameters that have the strongest effects on the model results are the Young’s modulus, thickness and density of the pars tensa; the Young’s modulus of the stapedial annular ligament; and the Young’s modulus and density of the malleus. Displacements of the tympanic membrane and manubrium and the low-frequency displacement of the stapes did not show large changes when the material properties of the incus, stapes, incudomallear joint, incudostapedial joint, and posterior incudal ligament were changed by ±10 % from their values in the baseline parameter set.
Footnotes
3
In the previous gerbil model from our group (Elkhouri et al. 2006), based on magnetic-resonance-microscopy images, the inferior part of the manubrium was narrower than it should have been.
 
4
Instead of this bony attachment, Elkhouri et al. (2006) used a ligament to connect the malleus to the cavity wall.
 
5
In the model by Elkhouri et al. (2006), this ligament was considered to be composed of two bundles.
 
6
In the model of Elkhouri et al. (2006) the stapedial annular ligament was modelled by shell elements and the rotational degrees of freedom of its nodes were fixed by mistake. That boundary condition allowed only piston-like motion of the stapes.
 
7
Note that their Figure 3, also used by Volandri et al. (2011), neglects the subepidermal and submucosal connective-tissue layers that lie lateral and medial to the radial and circular fibre layers (Lim 1970).
 
8
The very high value of 20 GPa reported in Table 3 of Volandri et al. (2011) was a typographical error (GPa rather than MPa) in the original paper by Gentil et al. (2005) (personal communication with Gentil). The very low value of 1.5 MPa used by Lesser and Williams (1988) was for a 2-D model. The very low values used by Funnell and Laszlo (1978) and Funnell (2001) for E c were intended to be extreme examples of anisotropy, not realistic estimates. The very low values used by Ferrazzini (2003) were for a pars-tensa model that was overly thick and was not smooth.
 
Literature
go back to reference Aernouts J, Dirckx JJJ (2011) Elastic characterization of the gerbil pars flaccida from in situ inflation experiments. Biomech Model Mechanobiol 10(5):727–741CrossRefPubMed Aernouts J, Dirckx JJJ (2011) Elastic characterization of the gerbil pars flaccida from in situ inflation experiments. Biomech Model Mechanobiol 10(5):727–741CrossRefPubMed
go back to reference Aernouts J, Dirckx JJJ (2012) Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus. Biomech Model Mechanobiol 11(6):829–840CrossRefPubMed Aernouts J, Dirckx JJJ (2012) Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus. Biomech Model Mechanobiol 11(6):829–840CrossRefPubMed
go back to reference Aernouts J, Soons JAM, Dirckx JJJ (2010) Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study. Hear Res 263(1–2):177–182CrossRefPubMed Aernouts J, Soons JAM, Dirckx JJJ (2010) Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study. Hear Res 263(1–2):177–182CrossRefPubMed
go back to reference Aernouts J, Aerts JRM, Dirckx JJJ (2012) Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear Res 290(1–2):45–54CrossRefPubMed Aernouts J, Aerts JRM, Dirckx JJJ (2012) Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear Res 290(1–2):45–54CrossRefPubMed
go back to reference Agache PG, Monneur C, Leveque JL, Rigal JD (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269(3):221–232CrossRefPubMed Agache PG, Monneur C, Leveque JL, Rigal JD (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269(3):221–232CrossRefPubMed
go back to reference Beranek LL (1954) Acoustics. Acoust. Soc. Am, New York Beranek LL (1954) Acoustics. Acoust. Soc. Am, New York
go back to reference Bergevin C, Olson ES (2014) External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane. J Acoust Soc Am 135(3):1294–1312PubMedCentralCrossRefPubMed Bergevin C, Olson ES (2014) External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane. J Acoust Soc Am 135(3):1294–1312PubMedCentralCrossRefPubMed
go back to reference Buytaert JAN, Salih WHM, Dierick M, Jacobs P, Dirckx JJJ (2011) Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures. J Assoc Res Otolaryngol 12(6):681–696PubMedCentralCrossRefPubMed Buytaert JAN, Salih WHM, Dierick M, Jacobs P, Dirckx JJJ (2011) Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures. J Assoc Res Otolaryngol 12(6):681–696PubMedCentralCrossRefPubMed
go back to reference Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35(2):305–314CrossRefPubMed Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35(2):305–314CrossRefPubMed
go back to reference Chole RA, Kodama K (1989) Comparative histology of the tympanic membrane and its relationship to cholesteatoma. Ann Otol Rhinol Laryngol 98(10):761–766CrossRefPubMed Chole RA, Kodama K (1989) Comparative histology of the tympanic membrane and its relationship to cholesteatoma. Ann Otol Rhinol Laryngol 98(10):761–766CrossRefPubMed
go back to reference Cohen YE, Bacon CK, Saunders JC (1992) Middle ear development III: morphometric changes in the conducting apparatus of the Mongolian gerbil. Hear Res 62(2):187–193CrossRefPubMed Cohen YE, Bacon CK, Saunders JC (1992) Middle ear development III: morphometric changes in the conducting apparatus of the Mongolian gerbil. Hear Res 62(2):187–193CrossRefPubMed
go back to reference Daphalapurkar NP, Dai C, Gan RZ, Lu H (2009) Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. J Mech Behav Biomed Mater 2(1):82–92CrossRefPubMed Daphalapurkar NP, Dai C, Gan RZ, Lu H (2009) Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. J Mech Behav Biomed Mater 2(1):82–92CrossRefPubMed
go back to reference Davies DV (1948) A note on the articulations of the auditory ossicles and related structures. J Laryngol Otol 62(08):533–536CrossRefPubMed Davies DV (1948) A note on the articulations of the auditory ossicles and related structures. J Laryngol Otol 62(08):533–536CrossRefPubMed
go back to reference de La Rochefoucauld O, Decraemer WF, Khanna SM, Olson ES (2008) Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil. J Assoc Res Otolaryngol 9(2):161–177CrossRefPubMed de La Rochefoucauld O, Decraemer WF, Khanna SM, Olson ES (2008) Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil. J Assoc Res Otolaryngol 9(2):161–177CrossRefPubMed
go back to reference Deb K (2014) Multi-objective Optimization. In: Burke EK, Kendall G (eds) Search methodologies. Springer, US, pp 403–449CrossRef Deb K (2014) Multi-objective Optimization. In: Burke EK, Kendall G (eds) Search methodologies. Springer, US, pp 403–449CrossRef
go back to reference Decraemer WF, Maes MA, Vanhuyse VJ (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13(6):463–468CrossRefPubMed Decraemer WF, Maes MA, Vanhuyse VJ (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13(6):463–468CrossRefPubMed
go back to reference Decraemer WF, de Rochefoucauld OL, Dong W, Khanna SM, Dirckx JJJ, Olson ES (2007) Scala vestibuli pressure and three-dimensional stapes velocity measured in direct succession in gerbil. J Acoust Soc Am 121(5):2774–2791CrossRefPubMed Decraemer WF, de Rochefoucauld OL, Dong W, Khanna SM, Dirckx JJJ, Olson ES (2007) Scala vestibuli pressure and three-dimensional stapes velocity measured in direct succession in gerbil. J Acoust Soc Am 121(5):2774–2791CrossRefPubMed
go back to reference Decraemer WF, Dirckx JJJ, Maftoon N, Funnell WRJ (2010) Simulating large deformations of the gerbil pars flaccida to determine its material properties. 33rd Midwinter Research Meeting. Association for research in otolaryngology, Anaheim Decraemer WF, Dirckx JJJ, Maftoon N, Funnell WRJ (2010) Simulating large deformations of the gerbil pars flaccida to determine its material properties. 33rd Midwinter Research Meeting. Association for research in otolaryngology, Anaheim
go back to reference Decraemer WF, Rochefoucauld de OL, Funnell WRJ, Olson ES (2014) Three-dimensional vibration of the malleus and incus in the living gerbil. J Assoc Res Otolaryngol 1–28. doi:10.1007/s10162-014-0452-1 Decraemer WF, Rochefoucauld de OL, Funnell WRJ, Olson ES (2014) Three-dimensional vibration of the malleus and incus in the living gerbil. J Assoc Res Otolaryngol 1–28. doi:10.​1007/​s10162-014-0452-1
go back to reference Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38(9):1807–1815CrossRefPubMed Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38(9):1807–1815CrossRefPubMed
go back to reference Fumagalli Z (1949) Ricerche morfologiche sull’apparato di trasmissione del suono. Sound-conducting apparatus: a study of morphology. Istituto per la diffusione di opere scientifiche, Milano Fumagalli Z (1949) Ricerche morfologiche sull’apparato di trasmissione del suono. Sound-conducting apparatus: a study of morphology. Istituto per la diffusione di opere scientifiche, Milano
go back to reference Funnell WRJ, Decraemer WF (1996) On the incorporation of moiré shape measurements in finite‐element models of the cat eardrum. J Acoust Soc Am 100(2):925–932CrossRefPubMed Funnell WRJ, Decraemer WF (1996) On the incorporation of moiré shape measurements in finite‐element models of the cat eardrum. J Acoust Soc Am 100(2):925–932CrossRefPubMed
go back to reference Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461CrossRefPubMed Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461CrossRefPubMed
go back to reference Funnell WRJ, Laszlo CA (1982) A critical review of experimental observations on ear-drum structure and function. ORL 44(4):181–205CrossRefPubMed Funnell WRJ, Laszlo CA (1982) A critical review of experimental observations on ear-drum structure and function. ORL 44(4):181–205CrossRefPubMed
go back to reference Funnell WRJ, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851CrossRefPubMed Funnell WRJ, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851CrossRefPubMed
go back to reference Funnell WRJ, Maftoon N, Decraemer WF (2013) Modeling of middle-ear mechanics. In: Puria S, Fay RR, Popper AN (eds) The middle ear - science, otosurgery, and technology Funnell WRJ, Maftoon N, Decraemer WF (2013) Modeling of middle-ear mechanics. In: Puria S, Fay RR, Popper AN (eds) The middle ear - science, otosurgery, and technology
go back to reference Gaihede M, Liao D, Gregersen H (2007) In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears. Phys Med Biol 52(3):803–814CrossRefPubMed Gaihede M, Liao D, Gregersen H (2007) In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears. Phys Med Biol 52(3):803–814CrossRefPubMed
go back to reference Gea SLR, Decraemer WF, Funnell RWJ, Dirckx JJJ, Maier H (2009) Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil. J Assoc Res Otolaryngol 11(1):1–17PubMedCentralCrossRefPubMed Gea SLR, Decraemer WF, Funnell RWJ, Dirckx JJJ, Maier H (2009) Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil. J Assoc Res Otolaryngol 11(1):1–17PubMedCentralCrossRefPubMed
go back to reference Geerligs M, van Breemen L, Peters G, Ackermans P, Baaijens F, Oomens C (2011) In vitro indentation to determine the mechanical properties of epidermis. J Biomech 44(6):1176–1181CrossRefPubMed Geerligs M, van Breemen L, Peters G, Ackermans P, Baaijens F, Oomens C (2011) In vitro indentation to determine the mechanical properties of epidermis. J Biomech 44(6):1176–1181CrossRefPubMed
go back to reference Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331CrossRef Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331CrossRef
go back to reference Ghadarghadar N, Agrawal SK, Samani A, Ladak HM (2013) Estimation of the quasi-static Young’s modulus of the eardrum using a pressurization technique. Comput Methods Prog Biomed 110(3):231–239CrossRef Ghadarghadar N, Agrawal SK, Samani A, Ladak HM (2013) Estimation of the quasi-static Young’s modulus of the eardrum using a pressurization technique. Comput Methods Prog Biomed 110(3):231–239CrossRef
go back to reference Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823–837CrossRefPubMed Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823–837CrossRefPubMed
go back to reference Hesabgar SM, Marshall H, Agrawal SK, Samani A, Ladak HM (2010) Measuring the quasi-static Young’s modulus of the eardrum using an indentation technique. Hear Res 263(1–2):168–176CrossRefPubMed Hesabgar SM, Marshall H, Agrawal SK, Samani A, Ladak HM (2010) Measuring the quasi-static Young’s modulus of the eardrum using an indentation technique. Hear Res 263(1–2):168–176CrossRefPubMed
go back to reference Huang G, Gan RZ, Lu H, Daphalapurkar NP (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130(1):014501–014501CrossRefPubMed Huang G, Gan RZ, Lu H, Daphalapurkar NP (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130(1):014501–014501CrossRefPubMed
go back to reference Kinsler LE, Frey AR, Coppens AB, Sanders JV (1999) Fundamentals of Acoustics. Wiley and Sons, New York Kinsler LE, Frey AR, Coppens AB, Sanders JV (1999) Fundamentals of Acoustics. Wiley and Sons, New York
go back to reference Kirikae I (1960) The structure and function of the middle ear. University of Tokyo Press, Tokyo Kirikae I (1960) The structure and function of the middle ear. University of Tokyo Press, Tokyo
go back to reference Kuypers LC, Dirckx JJJ, Decraemer WF, Timmermans J-P (2005) Thickness of the gerbil tympanic membrane measured with confocal microscopy. Hear Res 209(1–2):42–52CrossRefPubMed Kuypers LC, Dirckx JJJ, Decraemer WF, Timmermans J-P (2005) Thickness of the gerbil tympanic membrane measured with confocal microscopy. Hear Res 209(1–2):42–52CrossRefPubMed
go back to reference Ladak HM, Funnell WRJ (1996) Finite-element modeling of the normal and surgically repaired cat middle ear. J Acoust Soc Am 100:933CrossRefPubMed Ladak HM, Funnell WRJ (1996) Finite-element modeling of the normal and surgically repaired cat middle ear. J Acoust Soc Am 100:933CrossRefPubMed
go back to reference Lee CY, Rosowski JJ (2001) Effects of middle-ear static pressure on pars tensa and pars flaccida of gerbil ears. Hear Res 153(1-2):146–163CrossRefPubMed Lee CY, Rosowski JJ (2001) Effects of middle-ear static pressure on pars tensa and pars flaccida of gerbil ears. Hear Res 153(1-2):146–163CrossRefPubMed
go back to reference Lesser THJ, Williams KR (1988) The tympanic membrane in cross section: a finite element analysis. J Laryngol Otol 102(03):209–214CrossRefPubMed Lesser THJ, Williams KR (1988) The tympanic membrane in cross section: a finite element analysis. J Laryngol Otol 102(03):209–214CrossRefPubMed
go back to reference Lim DJ (1968a) Tympanic membrane: electron microscopic observation part I: pars tensa. Acta Otolaryngol 66(1-6):181–198CrossRefPubMed Lim DJ (1968a) Tympanic membrane: electron microscopic observation part I: pars tensa. Acta Otolaryngol 66(1-6):181–198CrossRefPubMed
go back to reference Lim DJ (1970) Human tympanic membrane: an ultrastructural observation. Acta Otolaryngol 70(3):176–186CrossRefPubMed Lim DJ (1970) Human tympanic membrane: an ultrastructural observation. Acta Otolaryngol 70(3):176–186CrossRefPubMed
go back to reference Luo H, Dai C, Lu H, Gan RZ (2009) Measurement of Young’s modulus of human tympanic membrane at high strain rates. J Biomech Eng 131(6):064501–064501CrossRefPubMed Luo H, Dai C, Lu H, Gan RZ (2009) Measurement of Young’s modulus of human tympanic membrane at high strain rates. J Biomech Eng 131(6):064501–064501CrossRefPubMed
go back to reference Lynch TJI, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72(1):108–130CrossRefPubMed Lynch TJI, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72(1):108–130CrossRefPubMed
go back to reference Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2013) Experimental study of vibrations of gerbil tympanic membrane with closed middle-ear cavity. J Assoc Res Otolaryngol. Accepted. Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2013) Experimental study of vibrations of gerbil tympanic membrane with closed middle-ear cavity. J Assoc Res Otolaryngol. Accepted.
go back to reference Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2014) Effect of opening middle-ear cavity on vibrations of gerbil tympanic membrane. J Assoc Res Otolaryngol 15(3):319–334PubMedCentralCrossRefPubMed Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2014) Effect of opening middle-ear cavity on vibrations of gerbil tympanic membrane. J Assoc Res Otolaryngol 15(3):319–334PubMedCentralCrossRefPubMed
go back to reference Motallebzadeh H, Charlebois M, Funnell WRJ (2013) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134(6):4427–4434CrossRefPubMed Motallebzadeh H, Charlebois M, Funnell WRJ (2013) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134(6):4427–4434CrossRefPubMed
go back to reference Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(7):67–94 Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(7):67–94
go back to reference Nicolas G, Fouquet T (2013) Adaptive mesh refinement for conformal hexahedralmeshes. Finite Elem Anal Des 67:1–12CrossRef Nicolas G, Fouquet T (2013) Adaptive mesh refinement for conformal hexahedralmeshes. Finite Elem Anal Des 67:1–12CrossRef
go back to reference Qi L, Mikhael CS, Funnell WRJ (2004) Application of the Taguchi method to sensitivity analysis of a middle-ear finite-element model. Proc 28th Ann Conf Can Med Biol Eng Soc 153–156 Qi L, Mikhael CS, Funnell WRJ (2004) Application of the Taguchi method to sensitivity analysis of a middle-ear finite-element model. Proc 28th Ann Conf Can Med Biol Eng Soc 153–156
go back to reference Rabbitt RD, Holmes MH (1986) A fibrous dynamic continuum model of the tympanic membrane. J Acoust Soc Am 80(6):1716–1728CrossRefPubMed Rabbitt RD, Holmes MH (1986) A fibrous dynamic continuum model of the tympanic membrane. J Acoust Soc Am 80(6):1716–1728CrossRefPubMed
go back to reference Rabbitt RD, Holmes MH (1988) Three‐dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane. J Acoust Soc Am 83(3):1064–1080CrossRefPubMed Rabbitt RD, Holmes MH (1988) Three‐dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane. J Acoust Soc Am 83(3):1064–1080CrossRefPubMed
go back to reference Ravicz ME, Rosowski JJ, Voigt HF (1992) Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: middle-ear input impedance. J Acoust Soc Am 92(1):157–177CrossRefPubMed Ravicz ME, Rosowski JJ, Voigt HF (1992) Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: middle-ear input impedance. J Acoust Soc Am 92(1):157–177CrossRefPubMed
go back to reference Rosowski JJ, Lee CY (2002) The effect of immobilizing the gerbil’s pars flaccida on the middle-ear’s response to static pressure. Hear Res 174(1-2):183–195CrossRefPubMed Rosowski JJ, Lee CY (2002) The effect of immobilizing the gerbil’s pars flaccida on the middle-ear’s response to static pressure. Hear Res 174(1-2):183–195CrossRefPubMed
go back to reference Rosowski JJ, Teoh SW, Flandermeyer DT (1997) The effect of the pars flaccida of the tympanic membrane on the ear’s sensitivity to sound. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hect-Poiner E (eds) Diversity in auditory mechanics. World Scientific, New Jersey, pp 129–135 Rosowski JJ, Teoh SW, Flandermeyer DT (1997) The effect of the pars flaccida of the tympanic membrane on the ear’s sensitivity to sound. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hect-Poiner E (eds) Diversity in auditory mechanics. World Scientific, New Jersey, pp 129–135
go back to reference Rosowski JJ, Ravicz ME, Teoh SW, Flandermeyer D (1999) Measurements of middle-ear function in the Mongolian gerbil, a specialized mammalian ear. Audiol Neurootol 4(3-4):129–136CrossRefPubMed Rosowski JJ, Ravicz ME, Teoh SW, Flandermeyer D (1999) Measurements of middle-ear function in the Mongolian gerbil, a specialized mammalian ear. Audiol Neurootol 4(3-4):129–136CrossRefPubMed
go back to reference Salih WHM, Buytaert JAN, Aerts JRM, Vanderniepen P, Dierick M, Dirckx JJJ (2012) Open access high-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains. Hear Res 284(1–2):1–5CrossRefPubMed Salih WHM, Buytaert JAN, Aerts JRM, Vanderniepen P, Dierick M, Dirckx JJJ (2012) Open access high-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains. Hear Res 284(1–2):1–5CrossRefPubMed
go back to reference Sim JH, Puria S, Steele CR (2007) Calculation of inertial properties of the malleus-incus complex from micro-CT imaging. J Mech Mater Struct 2:1515–1524CrossRef Sim JH, Puria S, Steele CR (2007) Calculation of inertial properties of the malleus-incus complex from micro-CT imaging. J Mech Mater Struct 2:1515–1524CrossRef
go back to reference Soons JA, Aernouts J, Dirckx JJ (2010) Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique. Hear Res 263(1-2):33–37CrossRefPubMed Soons JA, Aernouts J, Dirckx JJ (2010) Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique. Hear Res 263(1-2):33–37CrossRefPubMed
go back to reference Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1(2):109–122CrossRefPubMed Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1(2):109–122CrossRefPubMed
go back to reference Teoh SW, Flandermeyer DT, Rosowski JJ (1997) Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements. Hear Res 106(1-2):39–65CrossRefPubMed Teoh SW, Flandermeyer DT, Rosowski JJ (1997) Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements. Hear Res 106(1-2):39–65CrossRefPubMed
go back to reference Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells (Second.). McGraw-Hill, New York Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells (Second.). McGraw-Hill, New York
go back to reference Tuck-Lee JP, Pinsky PM, Steele CR, Puria S (2008) Finite element modeling of acousto-mechanical coupling in the cat middle ear. J Acoust Soc Am 124:348PubMedCentralCrossRefPubMed Tuck-Lee JP, Pinsky PM, Steele CR, Puria S (2008) Finite element modeling of acousto-mechanical coupling in the cat middle ear. J Acoust Soc Am 124:348PubMedCentralCrossRefPubMed
go back to reference Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44(7):1219–1236CrossRefPubMed Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44(7):1219–1236CrossRefPubMed
go back to reference von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York
go back to reference Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92(6):3157CrossRefPubMed Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92(6):3157CrossRefPubMed
go back to reference Wang YC, Lakes RS (2005) Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio. J Compos Mater 39(18):1645–1657CrossRef Wang YC, Lakes RS (2005) Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio. J Compos Mater 39(18):1645–1657CrossRef
go back to reference Zhang X, Gan RZ (2011) Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint. Biomech Model Mechanobiol 10(5):713–726PubMedCentralCrossRefPubMed Zhang X, Gan RZ (2011) Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint. Biomech Model Mechanobiol 10(5):713–726PubMedCentralCrossRefPubMed
Metadata
Title
Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound
Authors
Nima Maftoon
W. Robert J. Funnell
Sam J. Daniel
Willem F. Decraemer
Publication date
01-10-2015
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 5/2015
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-015-0531-y

Other articles of this Issue 5/2015

Journal of the Association for Research in Otolaryngology 5/2015 Go to the issue