Skip to main content
Top
Published in: International Journal of Clinical Oncology 4/2017

01-08-2017 | Review Article

Targeting metabolic reprogramming in KRAS-driven cancers

Authors: Kenji Kawada, Kosuke Toda, Yoshiharu Sakai

Published in: International Journal of Clinical Oncology | Issue 4/2017

Login to get access

Abstract

Mutations of KRAS are found in a variety of human malignancies, including in pancreatic cancer, colorectal cancer, and non-small cell lung cancer at high frequency. To date, no effective treatments that target mutant variants of KRAS have been introduced into clinical practice. In recent years, a number of studies have shown that the oncogene KRAS plays a critical role in controlling cancer metabolism by orchestrating multiple metabolic changes. One of the metabolic hallmarks of malignant tumor cells is their dependency on aerobic glycolysis, known as the Warburg effect. The role of KRAS signaling in the regulation of aerobic glycolysis has been reported in several types of cancer. KRAS-driven cancers are characterized by altered metabolic pathways involving enhanced nutrients uptake, enhanced glycolysis, enhanced glutaminolysis, and elevated synthesis of fatty acids and nucleotides. However, Just how mutated KRAS can coordinate the metabolic shift to promote tumor growth and whether specific metabolic pathways are essential for the tumorigenesis of KRAS-driven cancers are questions which remain to be answered. In this context, the aim of this review is to summarize current data on KRAS-related metabolic alterations in cancer cells. Given that cancer cells rely on changes in metabolism to support their growth and survival, the targeting of metabolic processes may be a potential strategy for treating KRAS-driven cancers.
Literature
1.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033CrossRefPubMedPubMedCentral
2.
go back to reference Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337CrossRefPubMed Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337CrossRefPubMed
3.
go back to reference Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95CrossRefPubMed Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95CrossRefPubMed
4.
go back to reference Galluzzi L, Kepp O, Vander Heiden MG et al (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846CrossRefPubMed Galluzzi L, Kepp O, Vander Heiden MG et al (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846CrossRefPubMed
5.
8.
9.
go back to reference Kovacević Z, Morris HP (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32:326–333PubMed Kovacević Z, Morris HP (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32:326–333PubMed
12.
16.
go back to reference Commisso C, Davidson SM, Soydaner-Azeloglu RG et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637CrossRefPubMedPubMedCentral Commisso C, Davidson SM, Soydaner-Azeloglu RG et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637CrossRefPubMedPubMedCentral
18.
go back to reference Ying H, Kimmelman AC, Lyssiotis CA et al (2012) Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670CrossRefPubMedPubMedCentral Ying H, Kimmelman AC, Lyssiotis CA et al (2012) Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670CrossRefPubMedPubMedCentral
19.
go back to reference Csibi A, Lee G, Yoon SO et al (2014) The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 24:2274–2280CrossRefPubMedPubMedCentral Csibi A, Lee G, Yoon SO et al (2014) The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 24:2274–2280CrossRefPubMedPubMedCentral
20.
go back to reference DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324CrossRefPubMed DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324CrossRefPubMed
21.
go back to reference Bhutia YD, Babu E, Ramachandran S et al (2015) Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res 75:1782–1788CrossRefPubMed Bhutia YD, Babu E, Ramachandran S et al (2015) Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res 75:1782–1788CrossRefPubMed
22.
23.
go back to reference Wang YP, Zhou W, Wang J et al (2016) Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell 64:673–687CrossRefPubMed Wang YP, Zhou W, Wang J et al (2016) Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell 64:673–687CrossRefPubMed
24.
go back to reference Mayers JR, Wu C, Clish CB et al (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20:1193–1198CrossRefPubMedPubMedCentral Mayers JR, Wu C, Clish CB et al (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20:1193–1198CrossRefPubMedPubMedCentral
25.
go back to reference Mayers JR, Torrence ME, Danai LV et al (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353:1161–1165CrossRefPubMedPubMedCentral Mayers JR, Torrence ME, Danai LV et al (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353:1161–1165CrossRefPubMedPubMedCentral
27.
28.
go back to reference Eng CH, Wang Z, Tkach D et al (2016) Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci USA 113:182–187CrossRefPubMed Eng CH, Wang Z, Tkach D et al (2016) Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci USA 113:182–187CrossRefPubMed
30.
go back to reference Rosenfeld MR, Ye X, Supko JG et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10:1359–1368CrossRefPubMedPubMedCentral Rosenfeld MR, Ye X, Supko JG et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10:1359–1368CrossRefPubMedPubMedCentral
31.
go back to reference Mahalingam D, Mita M, Sarantopoulos J et al (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10:1403–1414CrossRefPubMedPubMedCentral Mahalingam D, Mita M, Sarantopoulos J et al (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10:1403–1414CrossRefPubMedPubMedCentral
32.
go back to reference Wolpin BM, Rubinson DA, Wang X et al (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19:637–638CrossRefPubMedPubMedCentral Wolpin BM, Rubinson DA, Wang X et al (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19:637–638CrossRefPubMedPubMedCentral
34.
go back to reference Kamphorst JJ, Cross JR, Fan J et al (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA 110:8882–8887CrossRefPubMedPubMedCentral Kamphorst JJ, Cross JR, Fan J et al (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA 110:8882–8887CrossRefPubMedPubMedCentral
35.
36.
go back to reference Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancers. N Engl J Med 359:1757–1765CrossRefPubMed Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancers. N Engl J Med 359:1757–1765CrossRefPubMed
37.
go back to reference Lievre A, Bachet JB, Boige V et al (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379CrossRefPubMed Lievre A, Bachet JB, Boige V et al (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379CrossRefPubMed
39.
go back to reference Yun J, Rago C, Cheong I et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559CrossRefPubMedPubMedCentral Yun J, Rago C, Cheong I et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559CrossRefPubMedPubMedCentral
40.
go back to reference Jadvar H, Alavi A, Gambhir SS (2009) 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 50:1820–1827CrossRefPubMedPubMedCentral Jadvar H, Alavi A, Gambhir SS (2009) 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 50:1820–1827CrossRefPubMedPubMedCentral
41.
go back to reference Kawada K, Nakamoto Y, Kawada M et al (2012) Relationship between 18F-fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res 18:1696–1703CrossRefPubMed Kawada K, Nakamoto Y, Kawada M et al (2012) Relationship between 18F-fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res 18:1696–1703CrossRefPubMed
42.
go back to reference Kawada K, Toda K, Nakamoto Y et al (2015) Relationship between 18F-FDG PET/CT scans and KRAS mutations in metastatic colorectal cancer. J Nucl Med 56:1322–1327CrossRefPubMed Kawada K, Toda K, Nakamoto Y et al (2015) Relationship between 18F-FDG PET/CT scans and KRAS mutations in metastatic colorectal cancer. J Nucl Med 56:1322–1327CrossRefPubMed
43.
44.
go back to reference Chen SW, Chiang HC, Chen WT et al (2014) Correlation between PET/CT parameters and KRAS expression in colorectal cancer. Clin Nucl Med 39:685–689CrossRefPubMed Chen SW, Chiang HC, Chen WT et al (2014) Correlation between PET/CT parameters and KRAS expression in colorectal cancer. Clin Nucl Med 39:685–689CrossRefPubMed
45.
go back to reference Miles KA, Ganeshan B, Rodriguez-Justo M et al (2014) Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med 55:386–391CrossRefPubMed Miles KA, Ganeshan B, Rodriguez-Justo M et al (2014) Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med 55:386–391CrossRefPubMed
46.
go back to reference Lee JH, Kang J, Baik SH et al (2016) Relationship between 18F-Fluorodeoxyglucose uptake and V-Ki-Ras2 kirsten rat sarcoma viral oncogene homolog mutation in colorectal cancer patients: variability depending on c-reactive protein level. Medicine 95:e2236CrossRefPubMedPubMedCentral Lee JH, Kang J, Baik SH et al (2016) Relationship between 18F-Fluorodeoxyglucose uptake and V-Ki-Ras2 kirsten rat sarcoma viral oncogene homolog mutation in colorectal cancer patients: variability depending on c-reactive protein level. Medicine 95:e2236CrossRefPubMedPubMedCentral
47.
go back to reference Caicedo C, Garcia-Velloso MJ, Lozano MD et al (2014) Role of [1∙F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 41:2058–2065CrossRefPubMed Caicedo C, Garcia-Velloso MJ, Lozano MD et al (2014) Role of [1∙F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 41:2058–2065CrossRefPubMed
48.
go back to reference Iwamoto M, Kawada K, Nakamoto Y et al (2014) Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS. J Nucl Med 55:2038–2044CrossRefPubMed Iwamoto M, Kawada K, Nakamoto Y et al (2014) Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS. J Nucl Med 55:2038–2044CrossRefPubMed
49.
go back to reference Yun J, Mullarky E, Lu C et al (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396CrossRefPubMedPubMedCentral Yun J, Mullarky E, Lu C et al (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396CrossRefPubMedPubMedCentral
50.
go back to reference Aguilera O, Muñoz-Sagastibelza M, Torrejón B et al (2016) Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 7:47954–47965CrossRefPubMedPubMedCentral Aguilera O, Muñoz-Sagastibelza M, Torrejón B et al (2016) Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 7:47954–47965CrossRefPubMedPubMedCentral
51.
go back to reference Toda K, Kawada K, Iwamoto M et al (2016) Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia 18:654–665CrossRefPubMedPubMedCentral Toda K, Kawada K, Iwamoto M et al (2016) Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia 18:654–665CrossRefPubMedPubMedCentral
52.
go back to reference Zhang J, Fan J, Venneti S et al (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 56:205–218CrossRefPubMedPubMedCentral Zhang J, Fan J, Venneti S et al (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 56:205–218CrossRefPubMedPubMedCentral
54.
go back to reference Ye J, Kumanova M, Hart LS et al (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29:2082–2096CrossRefPubMedPubMedCentral Ye J, Kumanova M, Hart LS et al (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29:2082–2096CrossRefPubMedPubMedCentral
55.
go back to reference Balasubramanian MN, Butterworth EA, Kilberg MS (2013) Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 304:789–799CrossRef Balasubramanian MN, Butterworth EA, Kilberg MS (2013) Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 304:789–799CrossRef
56.
go back to reference Dufour E, Gay F, Aguera K et al (2012) Pancreatic tumor sensitivity to plasma l-asparagine starvation. Pancreas 41:940–948CrossRefPubMed Dufour E, Gay F, Aguera K et al (2012) Pancreatic tumor sensitivity to plasma l-asparagine starvation. Pancreas 41:940–948CrossRefPubMed
58.
go back to reference Ikeuchi H, Ahn YM, Otokawa T et al (2012) A sulfoximine-based inhibitor of human asparagine synthetase kills l-asparaginase-resistant leukemia cells. Bioorg Med Chem 20:5915–5927CrossRefPubMed Ikeuchi H, Ahn YM, Otokawa T et al (2012) A sulfoximine-based inhibitor of human asparagine synthetase kills l-asparaginase-resistant leukemia cells. Bioorg Med Chem 20:5915–5927CrossRefPubMed
59.
go back to reference Kral AS, Xu S, Graeber TG et al (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun 7:11457CrossRef Kral AS, Xu S, Graeber TG et al (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun 7:11457CrossRef
60.
go back to reference Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793CrossRefPubMedPubMedCentral Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793CrossRefPubMedPubMedCentral
61.
go back to reference Wong CC, Qian Y, Li X et al (2016) SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology 151(945–960):e6 Wong CC, Qian Y, Li X et al (2016) SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology 151(945–960):e6
63.
go back to reference Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266CrossRefPubMed Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266CrossRefPubMed
64.
go back to reference Bhutia YD, Ganapathy V (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta 1863:2531–2539CrossRefPubMed Bhutia YD, Ganapathy V (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta 1863:2531–2539CrossRefPubMed
67.
go back to reference Patra KC, Wang Q, Bhaskar PT et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24:213–228CrossRefPubMedPubMedCentral Patra KC, Wang Q, Bhaskar PT et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24:213–228CrossRefPubMedPubMedCentral
68.
go back to reference Jain M, Nilsson R, Sharma S et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044CrossRefPubMedPubMedCentral Jain M, Nilsson R, Sharma S et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044CrossRefPubMedPubMedCentral
69.
go back to reference Kim D, Fiske BP, Birsoy K et al (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520:363–367CrossRefPubMedPubMedCentral Kim D, Fiske BP, Birsoy K et al (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520:363–367CrossRefPubMedPubMedCentral
70.
go back to reference Guo JY, Karsli-Uzunbas G, Mathew R et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461CrossRefPubMedPubMedCentral Guo JY, Karsli-Uzunbas G, Mathew R et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461CrossRefPubMedPubMedCentral
71.
go back to reference Padanad MS, Konstantinidou G, Venkateswaran N (2016) Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep 16:1614–1628CrossRefPubMedPubMedCentral Padanad MS, Konstantinidou G, Venkateswaran N (2016) Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep 16:1614–1628CrossRefPubMedPubMedCentral
72.
go back to reference Gouw AM, Eberlin LS, Margulis K (2017) Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc Natl Acad Sci USA 114:4300–4305CrossRefPubMed Gouw AM, Eberlin LS, Margulis K (2017) Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc Natl Acad Sci USA 114:4300–4305CrossRefPubMed
73.
go back to reference Davidson SM, Papagiannakopoulos T, Olenchzock BA et al (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab 23:517–528CrossRefPubMedPubMedCentral Davidson SM, Papagiannakopoulos T, Olenchzock BA et al (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab 23:517–528CrossRefPubMedPubMedCentral
74.
go back to reference Zhou B, Der CJ, Cox AD (2016) The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol 58:60–69CrossRefPubMed Zhou B, Der CJ, Cox AD (2016) The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol 58:60–69CrossRefPubMed
75.
Metadata
Title
Targeting metabolic reprogramming in KRAS-driven cancers
Authors
Kenji Kawada
Kosuke Toda
Yoshiharu Sakai
Publication date
01-08-2017
Publisher
Springer Japan
Published in
International Journal of Clinical Oncology / Issue 4/2017
Print ISSN: 1341-9625
Electronic ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-017-1156-4

Other articles of this Issue 4/2017

International Journal of Clinical Oncology 4/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine