Skip to main content
Top
Published in: International Journal of Clinical Oncology 4/2016

01-08-2016 | Invited Review Article

Biological imaging in clinical oncology: radiation therapy based on functional imaging

Authors: Yo-Liang Lai, Chun-Yi Wu, K. S. Clifford Chao

Published in: International Journal of Clinical Oncology | Issue 4/2016

Login to get access

Abstract

Radiation therapy is one of the most effective tools for cancer treatment. In recent years, intensity-modulated radiation therapy has become increasingly popular in that target dose-escalation can be done while sparing adjacent normal tissues. For this reason, the development of measures to pave the way for accurate target delineation is of great interest. With the integration of functional information obtained by biological imaging with radiotherapy, strategies using advanced biological imaging to visualize metabolic pathways and to improve therapeutic index and predict treatment response are discussed in this article.
Literature
1.
go back to reference Apisarnthanarax S, Chao KS (2005) Current imaging paradigms in radiation oncology. Radiat Res 163(1):1–25CrossRefPubMed Apisarnthanarax S, Chao KS (2005) Current imaging paradigms in radiation oncology. Radiat Res 163(1):1–25CrossRefPubMed
2.
go back to reference Chao KS, Low DA, Perez CA et al (2000) Intensity-modulated radiation therapy in head and neck cancers: the Mallinckrodt experience. Int J Cancer 90(2):92–103CrossRefPubMed Chao KS, Low DA, Perez CA et al (2000) Intensity-modulated radiation therapy in head and neck cancers: the Mallinckrodt experience. Int J Cancer 90(2):92–103CrossRefPubMed
3.
go back to reference Verhey LJ (1999) Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems. Semin Radiat Oncol 9(1):78–98CrossRefPubMed Verhey LJ (1999) Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems. Semin Radiat Oncol 9(1):78–98CrossRefPubMed
5.
go back to reference van Elmpt W, Landry G, Das M et al (2016) Dual-energy CT in radiotherapy: current applications and future outlook. Radiother Oncol 119:137–144CrossRefPubMed van Elmpt W, Landry G, Das M et al (2016) Dual-energy CT in radiotherapy: current applications and future outlook. Radiother Oncol 119:137–144CrossRefPubMed
6.
go back to reference Simons D, Kachelriess M, Schlemmer HP (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24(4):930–939CrossRefPubMed Simons D, Kachelriess M, Schlemmer HP (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24(4):930–939CrossRefPubMed
7.
go back to reference Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed Bamberg F, Dierks A, Nikolaou K et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429CrossRefPubMed
8.
go back to reference Guggenberger R, Winklhofer S, Osterhoff G et al (2012) Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 22(11):2357–2364CrossRefPubMed Guggenberger R, Winklhofer S, Osterhoff G et al (2012) Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 22(11):2357–2364CrossRefPubMed
9.
11.
go back to reference van Elmpt W, Zegers CM, Das M et al (2014) Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 6(4):319–327PubMedPubMedCentral van Elmpt W, Zegers CM, Das M et al (2014) Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 6(4):319–327PubMedPubMedCentral
12.
go back to reference Jensen NK, Mulder D, Lock M et al (2014) Dynamic contrast enhanced CT aiding gross tumor volume delineation of liver tumors: an interobserver variability study. Radiother Oncol 111(1):153–157CrossRefPubMed Jensen NK, Mulder D, Lock M et al (2014) Dynamic contrast enhanced CT aiding gross tumor volume delineation of liver tumors: an interobserver variability study. Radiother Oncol 111(1):153–157CrossRefPubMed
13.
go back to reference Gallagher FA (2010) An introduction to functional and molecular imaging with MRI. Clin Radiol 65(7):557–566CrossRefPubMed Gallagher FA (2010) An introduction to functional and molecular imaging with MRI. Clin Radiol 65(7):557–566CrossRefPubMed
14.
go back to reference Whitfield GA, Kennedy SR, Djoukhadar IK et al (2014) Imaging and target volume delineation in glioma. Clin Oncol 26(7):364–376CrossRef Whitfield GA, Kennedy SR, Djoukhadar IK et al (2014) Imaging and target volume delineation in glioma. Clin Oncol 26(7):364–376CrossRef
15.
go back to reference Hou DL, Shi GF, Gao XS et al (2013) Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma. Radiat Oncol 8:169CrossRefPubMedPubMedCentral Hou DL, Shi GF, Gao XS et al (2013) Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma. Radiat Oncol 8:169CrossRefPubMedPubMedCentral
16.
go back to reference Burbach JP, Kleijnen JP, Reerink O et al (2016) Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer. Radiother Oncol 118(2):399–407CrossRefPubMed Burbach JP, Kleijnen JP, Reerink O et al (2016) Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer. Radiother Oncol 118(2):399–407CrossRefPubMed
17.
go back to reference Lammering G, De Ruysscher D, van Baardwijk A et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186(9):471–481CrossRefPubMed Lammering G, De Ruysscher D, van Baardwijk A et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186(9):471–481CrossRefPubMed
18.
go back to reference Konert T, Vogel W, MacManus MP et al (2015) PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol 116(1):27–34CrossRefPubMed Konert T, Vogel W, MacManus MP et al (2015) PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol 116(1):27–34CrossRefPubMed
19.
go back to reference Abramyuk A, Hietschold V, Appold S et al (2015) Radiochemotherapy-induced changes of tumour vascularity and blood supply estimated by dynamic contrast-enhanced CT and fractal analysis in malignant head and neck tumours. Br J Radiol 88(1045):20140412CrossRefPubMed Abramyuk A, Hietschold V, Appold S et al (2015) Radiochemotherapy-induced changes of tumour vascularity and blood supply estimated by dynamic contrast-enhanced CT and fractal analysis in malignant head and neck tumours. Br J Radiol 88(1045):20140412CrossRefPubMed
20.
go back to reference Hwang SH, Yoo MR, Park CH et al (2013) Dynamic contrast-enhanced CT to assess metabolic response in patients with advanced non-small cell lung cancer and stable disease after chemotherapy or chemoradiotherapy. Eur Radiol 23(6):1573–1581CrossRefPubMed Hwang SH, Yoo MR, Park CH et al (2013) Dynamic contrast-enhanced CT to assess metabolic response in patients with advanced non-small cell lung cancer and stable disease after chemotherapy or chemoradiotherapy. Eur Radiol 23(6):1573–1581CrossRefPubMed
21.
go back to reference Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74CrossRefPubMed Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74CrossRefPubMed
22.
go back to reference Ng SH, Lin CY, Chan SC et al (2013) Dynamic contrast-enhanced MR imaging predicts local control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy. PLoS One 8(8):e72230CrossRefPubMedPubMedCentral Ng SH, Lin CY, Chan SC et al (2013) Dynamic contrast-enhanced MR imaging predicts local control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy. PLoS One 8(8):e72230CrossRefPubMedPubMedCentral
23.
go back to reference Shukla-Dave A, Lee NY, Jansen JF et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head-and-neck squamous cell carcinoma patients with nodal metastases. Int J Radiat Oncol Biol Phys 82(5):1837–1844CrossRefPubMed Shukla-Dave A, Lee NY, Jansen JF et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head-and-neck squamous cell carcinoma patients with nodal metastases. Int J Radiat Oncol Biol Phys 82(5):1837–1844CrossRefPubMed
24.
go back to reference Donaldson SB, Buckley DL, O’Connor JP et al (2010) Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix. Br J Cancer 102(1):23–26CrossRefPubMed Donaldson SB, Buckley DL, O’Connor JP et al (2010) Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix. Br J Cancer 102(1):23–26CrossRefPubMed
25.
go back to reference Mayr NA, Huang Z, Wang JZ et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys 83(3):972–979CrossRefPubMed Mayr NA, Huang Z, Wang JZ et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys 83(3):972–979CrossRefPubMed
26.
go back to reference Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74(3):766–773CrossRefPubMed Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74(3):766–773CrossRefPubMed
27.
28.
go back to reference Liu L, Wu N, Ouyang H et al (2014) Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol 87(1043):20140359CrossRefPubMedPubMedCentral Liu L, Wu N, Ouyang H et al (2014) Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol 87(1043):20140359CrossRefPubMedPubMedCentral
29.
go back to reference Harry VN, Semple SI, Gilbert FJ et al (2008) Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol 111(2):213–220CrossRefPubMed Harry VN, Semple SI, Gilbert FJ et al (2008) Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol 111(2):213–220CrossRefPubMed
30.
go back to reference Galban S, Lemasson B, Williams TM et al (2012) DW-MRI as a biomarker to compare therapeutic outcomes in radiotherapy regimens incorporating temozolomide or gemcitabine in glioblastoma. PLoS One 7(4):e35857CrossRefPubMedPubMedCentral Galban S, Lemasson B, Williams TM et al (2012) DW-MRI as a biomarker to compare therapeutic outcomes in radiotherapy regimens incorporating temozolomide or gemcitabine in glioblastoma. PLoS One 7(4):e35857CrossRefPubMedPubMedCentral
31.
go back to reference Farjam R, Tsien CI, Feng FY et al (2014) Investigation of the diffusion abnormality index as a new imaging biomarker for early assessment of brain tumor response to radiation therapy. Neuro-oncology 16(1):131–139CrossRefPubMed Farjam R, Tsien CI, Feng FY et al (2014) Investigation of the diffusion abnormality index as a new imaging biomarker for early assessment of brain tumor response to radiation therapy. Neuro-oncology 16(1):131–139CrossRefPubMed
32.
go back to reference Vandecaveye V, De Keyzer F, Nuyts S et al (2007) Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 67(4):960–971CrossRefPubMed Vandecaveye V, De Keyzer F, Nuyts S et al (2007) Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 67(4):960–971CrossRefPubMed
33.
go back to reference Noij DP, Pouwels PJ, Ljumanovic R et al (2015) Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma. Eur J Radiol 84(1):108–116CrossRefPubMed Noij DP, Pouwels PJ, Ljumanovic R et al (2015) Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma. Eur J Radiol 84(1):108–116CrossRefPubMed
34.
go back to reference Tyagi N, Riaz N, Hunt M et al (2016) Weekly response assessment of involved lymph nodes to radiotherapy using diffusion-weighted MRI in oropharynx squamous cell carcinoma. Med Phys 43(1):137CrossRefPubMed Tyagi N, Riaz N, Hunt M et al (2016) Weekly response assessment of involved lymph nodes to radiotherapy using diffusion-weighted MRI in oropharynx squamous cell carcinoma. Med Phys 43(1):137CrossRefPubMed
35.
go back to reference Lambrecht M, Vandecaveye V, De Keyzer F et al (2012) Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys 82(2):863–870CrossRefPubMed Lambrecht M, Vandecaveye V, De Keyzer F et al (2012) Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys 82(2):863–870CrossRefPubMed
36.
go back to reference Curvo-Semedo L, Lambregts DM, Maas M et al (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy: conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 260(3):734–743CrossRefPubMed Curvo-Semedo L, Lambregts DM, Maas M et al (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy: conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 260(3):734–743CrossRefPubMed
37.
go back to reference Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18(8):2224–2231CrossRefPubMedPubMedCentral Lambregts DM, Vandecaveye V, Barbaro B et al (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18(8):2224–2231CrossRefPubMedPubMedCentral
38.
go back to reference Payne GS, Leach MO (2006) Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 79(Spec No 1):S16–S26CrossRefPubMed Payne GS, Leach MO (2006) Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 79(Spec No 1):S16–S26CrossRefPubMed
39.
go back to reference Muruganandham M, Clerkin PP, Smith BJ et al (2014) 3-Dimensional magnetic resonance spectroscopic imaging at 3 Tesla for early response assessment of glioblastoma patients during external beam radiation therapy. Int J Radiat Oncol Biol Phys 90(1):181–189CrossRefPubMedPubMedCentral Muruganandham M, Clerkin PP, Smith BJ et al (2014) 3-Dimensional magnetic resonance spectroscopic imaging at 3 Tesla for early response assessment of glioblastoma patients during external beam radiation therapy. Int J Radiat Oncol Biol Phys 90(1):181–189CrossRefPubMedPubMedCentral
40.
go back to reference Deviers A, Ken S, Filleron T et al (2014) Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 90(2):385–393CrossRefPubMed Deviers A, Ken S, Filleron T et al (2014) Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 90(2):385–393CrossRefPubMed
41.
go back to reference Zapotoczna A, Sasso G, Simpson J et al (2007) Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 9(6):455–463CrossRefPubMedPubMedCentral Zapotoczna A, Sasso G, Simpson J et al (2007) Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 9(6):455–463CrossRefPubMedPubMedCentral
42.
go back to reference Crehange G, Maingon P, Gauthier M et al (2011) Early choline levels from 3-tesla MR spectroscopy after exclusive radiation therapy in patients with clinically localized prostate cancer are predictive of plasmatic levels of PSA at 1 year. Int J Radiat Oncol Biol Phys 81(4):e407–e413CrossRefPubMed Crehange G, Maingon P, Gauthier M et al (2011) Early choline levels from 3-tesla MR spectroscopy after exclusive radiation therapy in patients with clinically localized prostate cancer are predictive of plasmatic levels of PSA at 1 year. Int J Radiat Oncol Biol Phys 81(4):e407–e413CrossRefPubMed
43.
go back to reference Radford J, Illidge T, Counsell N et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607CrossRefPubMed Radford J, Illidge T, Counsell N et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607CrossRefPubMed
44.
go back to reference Joye I, Deroose CM, Vandecaveye V et al (2014) The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113(2):158–165CrossRefPubMed Joye I, Deroose CM, Vandecaveye V et al (2014) The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113(2):158–165CrossRefPubMed
45.
go back to reference Wu CY, Wang HE, Lin MH et al (2012) Radiolabeled nucleosides for predicting and monitoring the cancer therapeutic efficacy of chemodrugs. Curr Med Chem 19(20):3315–3324CrossRefPubMed Wu CY, Wang HE, Lin MH et al (2012) Radiolabeled nucleosides for predicting and monitoring the cancer therapeutic efficacy of chemodrugs. Curr Med Chem 19(20):3315–3324CrossRefPubMed
46.
go back to reference Soloviev D, Lewis D, Honess D et al (2012) [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48(4):416–424CrossRefPubMed Soloviev D, Lewis D, Honess D et al (2012) [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48(4):416–424CrossRefPubMed
47.
go back to reference Apisarnthanarax S, Alauddin MM, Mourtada F et al (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res 12(15):4590–4597CrossRefPubMed Apisarnthanarax S, Alauddin MM, Mourtada F et al (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res 12(15):4590–4597CrossRefPubMed
48.
go back to reference Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49(4):1171–1182CrossRefPubMed Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49(4):1171–1182CrossRefPubMed
49.
go back to reference Bradshaw TJ, Bowen SR, Deveau MA et al (2015) Molecular imaging biomarkers of resistance to radiation therapy for spontaneous nasal tumors in canines. Int J Radiat Oncol Biol Phys 91(4):787–795CrossRefPubMedPubMedCentral Bradshaw TJ, Bowen SR, Deveau MA et al (2015) Molecular imaging biomarkers of resistance to radiation therapy for spontaneous nasal tumors in canines. Int J Radiat Oncol Biol Phys 91(4):787–795CrossRefPubMedPubMedCentral
50.
go back to reference Nyflot MJ, Kruser TJ, Traynor AM et al (2015) Phase 1 trial of bevacizumab with concurrent chemoradiation therapy for squamous cell carcinoma of the head and neck with exploratory functional imaging of tumor hypoxia, proliferation, and perfusion. Int J Radiat Oncol Biol Phys 91(5):942–951CrossRefPubMedPubMedCentral Nyflot MJ, Kruser TJ, Traynor AM et al (2015) Phase 1 trial of bevacizumab with concurrent chemoradiation therapy for squamous cell carcinoma of the head and neck with exploratory functional imaging of tumor hypoxia, proliferation, and perfusion. Int J Radiat Oncol Biol Phys 91(5):942–951CrossRefPubMedPubMedCentral
51.
go back to reference Arens AI, Troost EG, Hoeben BA et al (2014) Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. Eur J Nucl Med Mol Imaging 41(5):915–924CrossRefPubMed Arens AI, Troost EG, Hoeben BA et al (2014) Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. Eur J Nucl Med Mol Imaging 41(5):915–924CrossRefPubMed
52.
go back to reference Trigonis I, Koh PK, Taylor B et al (2014) Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur J Nucl Med Mol Imaging 41(4):682–693CrossRefPubMedPubMedCentral Trigonis I, Koh PK, Taylor B et al (2014) Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur J Nucl Med Mol Imaging 41(4):682–693CrossRefPubMedPubMedCentral
53.
go back to reference Everitt SJ, Ball DL, Hicks RJ et al (2014) Differential (18)F-FDG and (18)F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J Nucl Med 55(7):1069–1074CrossRefPubMed Everitt SJ, Ball DL, Hicks RJ et al (2014) Differential (18)F-FDG and (18)F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J Nucl Med 55(7):1069–1074CrossRefPubMed
54.
go back to reference Zhao F, Li M, Wang Z et al (2015) (18)F-Fluorothymidine PET-CT for resected malignant gliomas before radiotherapy: tumor extent according to proliferative activity compared with MRI. PLoS One 10(3):e0118769CrossRefPubMedPubMedCentral Zhao F, Li M, Wang Z et al (2015) (18)F-Fluorothymidine PET-CT for resected malignant gliomas before radiotherapy: tumor extent according to proliferative activity compared with MRI. PLoS One 10(3):e0118769CrossRefPubMedPubMedCentral
55.
go back to reference Sovik A, Malinen E, Olsen DR (2009) Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 73(3):650–658CrossRefPubMed Sovik A, Malinen E, Olsen DR (2009) Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 73(3):650–658CrossRefPubMed
56.
go back to reference Mason J, Al-Qaisieh B, Bownes P et al (2014) Multi-parametric MRI-guided focal tumor boost using HDR prostate brachytherapy: a feasibility study. Brachytherapy 13(2):137–145CrossRefPubMed Mason J, Al-Qaisieh B, Bownes P et al (2014) Multi-parametric MRI-guided focal tumor boost using HDR prostate brachytherapy: a feasibility study. Brachytherapy 13(2):137–145CrossRefPubMed
57.
go back to reference Dyk P, Jiang N, Sun B et al (2014) Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 90(4):794–801CrossRefPubMed Dyk P, Jiang N, Sun B et al (2014) Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 90(4):794–801CrossRefPubMed
58.
go back to reference Einstein DB, Wessels B, Bangert B et al (2012) Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 84(3):668–674CrossRefPubMedPubMedCentral Einstein DB, Wessels B, Bangert B et al (2012) Phase II trial of radiosurgery to magnetic resonance spectroscopy-defined high-risk tumor volumes in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 84(3):668–674CrossRefPubMedPubMedCentral
59.
go back to reference Trinkaus ME, Blum R, Rischin D et al (2013) Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol 57(4):475–481CrossRefPubMed Trinkaus ME, Blum R, Rischin D et al (2013) Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy. J Med Imaging Radiat Oncol 57(4):475–481CrossRefPubMed
60.
go back to reference Bollineni VR, Kerner GS, Pruim J et al (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III–IV non-small cell lung cancer patients. J Nucl Med 54(8):1175–1180CrossRefPubMed Bollineni VR, Kerner GS, Pruim J et al (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III–IV non-small cell lung cancer patients. J Nucl Med 54(8):1175–1180CrossRefPubMed
61.
go back to reference Servagi-Vernat S, Differding S, Hanin FX et al (2014) A prospective clinical study of 18F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552CrossRefPubMed Servagi-Vernat S, Differding S, Hanin FX et al (2014) A prospective clinical study of 18F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552CrossRefPubMed
62.
go back to reference Dehdashti F, Grigsby PW, Lewis JS et al (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 49(2):201–205CrossRefPubMed Dehdashti F, Grigsby PW, Lewis JS et al (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 49(2):201–205CrossRefPubMed
63.
go back to reference Fleming IN, Manavaki R, Blower PJ et al (2015) Imaging tumour hypoxia with positron emission tomography. Br J Cancer 112(2):238–250CrossRefPubMed Fleming IN, Manavaki R, Blower PJ et al (2015) Imaging tumour hypoxia with positron emission tomography. Br J Cancer 112(2):238–250CrossRefPubMed
64.
go back to reference Mortensen LS, Johansen J, Kallehauge J et al (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 105(1):14–20CrossRefPubMed Mortensen LS, Johansen J, Kallehauge J et al (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 105(1):14–20CrossRefPubMed
65.
go back to reference Obata A, Kasamatsu S, Lewis JS et al (2005) Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol 32(1):21–28CrossRefPubMed Obata A, Kasamatsu S, Lewis JS et al (2005) Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol 32(1):21–28CrossRefPubMed
66.
go back to reference Lewis J, Laforest R, Buettner T et al (2001) Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci USA 98(3):1206–1211CrossRefPubMedPubMedCentral Lewis J, Laforest R, Buettner T et al (2001) Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci USA 98(3):1206–1211CrossRefPubMedPubMedCentral
67.
go back to reference Yoshii Y, Furukawa T, Kiyono Y et al (2010) Copper-64-diacetyl-bis (N4-methylthiosemicarbazone) accumulates in rich regions of CD133+ highly tumorigenic cells in mouse colon carcinoma. Nucl Med Biol 37(4):395–404CrossRefPubMed Yoshii Y, Furukawa T, Kiyono Y et al (2010) Copper-64-diacetyl-bis (N4-methylthiosemicarbazone) accumulates in rich regions of CD133+ highly tumorigenic cells in mouse colon carcinoma. Nucl Med Biol 37(4):395–404CrossRefPubMed
68.
go back to reference Yoshii Y, Furukawa T, Kiyono Y et al (2011) Internal radiotherapy with copper-64-diacetyl-bis (N4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nucl Med Biol 38(2):151–157CrossRefPubMed Yoshii Y, Furukawa T, Kiyono Y et al (2011) Internal radiotherapy with copper-64-diacetyl-bis (N4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nucl Med Biol 38(2):151–157CrossRefPubMed
69.
go back to reference Laforest R, Dehdashti F, Lewis JS et al (2005) Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32(7):764–770CrossRefPubMed Laforest R, Dehdashti F, Lewis JS et al (2005) Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32(7):764–770CrossRefPubMed
70.
go back to reference Yoshii Y, Matsumoto H, Yoshimoto M et al (2014) Controlled administration of penicillamine reduces radiation exposure in critical organs during 64Cu-ATSM internal radiotherapy: a novel strategy for liver protection. PLoS One 9(1):e86996CrossRefPubMedPubMedCentral Yoshii Y, Matsumoto H, Yoshimoto M et al (2014) Controlled administration of penicillamine reduces radiation exposure in critical organs during 64Cu-ATSM internal radiotherapy: a novel strategy for liver protection. PLoS One 9(1):e86996CrossRefPubMedPubMedCentral
71.
72.
go back to reference Groenendaal G, van den Berg CA, Korporaal JG et al (2010) Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 95(2):185–190CrossRefPubMed Groenendaal G, van den Berg CA, Korporaal JG et al (2010) Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 95(2):185–190CrossRefPubMed
Metadata
Title
Biological imaging in clinical oncology: radiation therapy based on functional imaging
Authors
Yo-Liang Lai
Chun-Yi Wu
K. S. Clifford Chao
Publication date
01-08-2016
Publisher
Springer Japan
Published in
International Journal of Clinical Oncology / Issue 4/2016
Print ISSN: 1341-9625
Electronic ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-016-1000-2

Other articles of this Issue 4/2016

International Journal of Clinical Oncology 4/2016 Go to the issue

Introduction to Invited Review Articles

Biological imaging in clinical oncology—introduction

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine