Skip to main content
Top
Published in: International Journal of Clinical Oncology 3/2016

Open Access 01-06-2016 | Invited Review Article

PD-1/PD-L1 blockade in cancer treatment: perspectives and issues

Authors: Junzo Hamanishi, Masaki Mandai, Noriomi Matsumura, Kaoru Abiko, Tsukasa Baba, Ikuo Konishi

Published in: International Journal of Clinical Oncology | Issue 3/2016

Login to get access

Abstract

Recent studies showed that tumor cells ‘edit’ host immunity in several ways to evade immune defenses in the tumor microenvironment. This phenomenon is called “cancer immune escape.” One of the most important components in this system is an immunosuppressive co-signal (immune checkpoint) mediated by the PD-1 receptor and its ligand, PD-L1. PD-1 is mainly expressed on activated T cells, whereas PD-L1 is expressed on several types of tumor cells. Preclinical studies have shown that inhibition of the interaction between PD-1 and PD-L1 enhances the T-cell response and mediates antitumor activity. Several clinical trials of PD-1/PD-L1 signal-blockade agents have exhibited dramatic antitumor efficacy in patients with certain types of solid or hematological malignancies. In this review, we highlight recent clinical trials using anti-PD-1 or anti-PD-L1 antibodies against several types of malignancies, including a trial conducted in our department, and describe the clinical perspectives and issues regarding the PD-1/PD-L1 blockade in cancer treatment.
Literature
1.
go back to reference Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 11:991–998CrossRef Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 11:991–998CrossRef
2.
go back to reference Ishida Y, Agata Y, Shibahara K et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895PubMedPubMedCentral Ishida Y, Agata Y, Shibahara K et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895PubMedPubMedCentral
3.
go back to reference Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297CrossRefPubMedPubMedCentral Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297CrossRefPubMedPubMedCentral
4.
go back to reference Iwai Y, Terawaki S, Honjo T (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 17:133–144CrossRefPubMed Iwai Y, Terawaki S, Honjo T (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 17:133–144CrossRefPubMed
5.
go back to reference Hirano F, Kaneko K, Tamura H et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096PubMed Hirano F, Kaneko K, Tamura H et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096PubMed
6.
go back to reference Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034CrossRefPubMedPubMedCentral Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034CrossRefPubMedPubMedCentral
7.
go back to reference Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824CrossRefPubMed Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824CrossRefPubMed
8.
go back to reference Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMed Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMed
9.
go back to reference Keir ME, Butte MJ, Freeman GJ et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefPubMed Keir ME, Butte MJ, Freeman GJ et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefPubMed
10.
go back to reference Blank C, Brown I, Peterson AC et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145CrossRefPubMed Blank C, Brown I, Peterson AC et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145CrossRefPubMed
11.
go back to reference Curiel TJ, Wei S, Dong H et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567CrossRefPubMed Curiel TJ, Wei S, Dong H et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567CrossRefPubMed
12.
go back to reference Thompson RH, Gillett MD, Cheville JC et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179CrossRefPubMedPubMedCentral Thompson RH, Gillett MD, Cheville JC et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179CrossRefPubMedPubMedCentral
13.
go back to reference Ohigashi Y, Sho M, Yamada Y et al (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953CrossRefPubMed Ohigashi Y, Sho M, Yamada Y et al (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953CrossRefPubMed
14.
go back to reference Hamanishi J, Mandai M, Iwasaki M et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365CrossRefPubMedPubMedCentral Hamanishi J, Mandai M, Iwasaki M et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365CrossRefPubMedPubMedCentral
15.
go back to reference Nomi T, Sho M, Akahori T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157CrossRefPubMed Nomi T, Sho M, Akahori T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157CrossRefPubMed
16.
go back to reference Konishi J, Yamazaki K, Azuma M et al (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10:5094–5100CrossRefPubMed Konishi J, Yamazaki K, Azuma M et al (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10:5094–5100CrossRefPubMed
17.
go back to reference Wu C, Zhu Y, Jiang J et al (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19–24CrossRefPubMed Wu C, Zhu Y, Jiang J et al (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19–24CrossRefPubMed
18.
go back to reference Ghebeh H, Mohammed S, Al-Omair A et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198CrossRefPubMedPubMedCentral Ghebeh H, Mohammed S, Al-Omair A et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198CrossRefPubMedPubMedCentral
19.
go back to reference Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175CrossRefPubMedPubMedCentral Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175CrossRefPubMedPubMedCentral
20.
21.
go back to reference Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030CrossRefPubMedPubMedCentral Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030CrossRefPubMedPubMedCentral
22.
go back to reference Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330CrossRefPubMed Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330CrossRefPubMed
23.
go back to reference Weber JS, D’Angelo SP, Minor D et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384CrossRefPubMed Weber JS, D’Angelo SP, Minor D et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384CrossRefPubMed
24.
go back to reference Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532CrossRefPubMed Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532CrossRefPubMed
25.
26.
go back to reference Lutzky J, Antonia SJ, Blake-Haskins A et al. (2014) A phase 1 study of MEDI4736, an anti-PD-L1 antibody, in patients with advanced solid tumors. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 3001) Lutzky J, Antonia SJ, Blake-Haskins A et al. (2014) A phase 1 study of MEDI4736, an anti-PD-L1 antibody, in patients with advanced solid tumors. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 3001)
27.
go back to reference Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature (Lond) 515:563–567CrossRef Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature (Lond) 515:563–567CrossRef
28.
go back to reference Rizvi NA, Mazières J, Planchard D et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265CrossRefPubMed Rizvi NA, Mazières J, Planchard D et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265CrossRefPubMed
29.
go back to reference Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135CrossRefPubMed Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135CrossRefPubMed
30.
go back to reference Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639CrossRefPubMed Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639CrossRefPubMed
31.
32.
go back to reference Brahmer JR, Rizvi NA, Lutzky J et al. (2014) Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 8021) Brahmer JR, Rizvi NA, Lutzky J et al. (2014) Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 8021)
33.
go back to reference Gulley JL, Spigel D, Kelly K et al. (2015) Avelumab (MSB0010718C), an anti-PD-L1 antibody, in advanced NSCLC patients: a phase 1b, open-label expansion trial in patients progressing after platinum-based chemotherapy. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 8034) Gulley JL, Spigel D, Kelly K et al. (2015) Avelumab (MSB0010718C), an anti-PD-L1 antibody, in advanced NSCLC patients: a phase 1b, open-label expansion trial in patients progressing after platinum-based chemotherapy. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 8034)
34.
go back to reference Motzer RJ, Rini BI, McDermott DF et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33:1430–1437CrossRefPubMed Motzer RJ, Rini BI, McDermott DF et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33:1430–1437CrossRefPubMed
35.
go back to reference Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813CrossRefPubMed Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813CrossRefPubMed
36.
go back to reference Hamanishi J, Mandai M, Matsumura N et al (2010) Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells 28:164–173PubMed Hamanishi J, Mandai M, Matsumura N et al (2010) Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells 28:164–173PubMed
37.
go back to reference Hamanishi J, Mandai M, Abiko K et al (2011) The comprehensive assessment of local immune status of ovarian cancer by the clustering of multiple immune factors. Clin Immunol 141:338–347CrossRefPubMed Hamanishi J, Mandai M, Abiko K et al (2011) The comprehensive assessment of local immune status of ovarian cancer by the clustering of multiple immune factors. Clin Immunol 141:338–347CrossRefPubMed
38.
go back to reference Hamanishi J, Mandai M, Ikeda T et al. (2014) Efficacy and safety of anti-PD-1 antibody (Nivolumab: BMS-936558, ONO-4538) in patients with platinum-resistant ovarian cancer. 2014 ASCO Annual Meeting, Clinical Science Symposium. J Clin Oncol 32:5s (suppl: abstr 5511) Hamanishi J, Mandai M, Ikeda T et al. (2014) Efficacy and safety of anti-PD-1 antibody (Nivolumab: BMS-936558, ONO-4538) in patients with platinum-resistant ovarian cancer. 2014 ASCO Annual Meeting, Clinical Science Symposium. J Clin Oncol 32:5s (suppl: abstr 5511)
39.
go back to reference Hamanishi J, Mandai M, Ikeda T et al (2015) Efficacy and safety of anti-PD-1 antibody (Nivolumab: BMS-936558, ONO-4538) in patients with platinum-resistant ovarian cancer. J Clin Oncol 33:4015–4022CrossRefPubMed Hamanishi J, Mandai M, Ikeda T et al (2015) Efficacy and safety of anti-PD-1 antibody (Nivolumab: BMS-936558, ONO-4538) in patients with platinum-resistant ovarian cancer. J Clin Oncol 33:4015–4022CrossRefPubMed
40.
go back to reference Hamanishi J, Mandai M, Ikeda T, et al. (2015) Durable tumor remission in patients with platinum-resistant ovarian cancer receiving nivolumab. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 5570) Hamanishi J, Mandai M, Ikeda T, et al. (2015) Durable tumor remission in patients with platinum-resistant ovarian cancer receiving nivolumab. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 5570)
41.
go back to reference Hamanishi J (2015) Immunotherapy for gynaecological cancers: Challenges and opportunities. ESMO Asia 2015. Special Symposium. 18 December 2015, Singapore Hamanishi J (2015) Immunotherapy for gynaecological cancers: Challenges and opportunities. ESMO Asia 2015. Special Symposium. 18 December 2015, Singapore
42.
go back to reference Varga A, Piha-Paul SA, Ott PA et al. (2015) Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: interim results from a phase Ib study. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 5510) Varga A, Piha-Paul SA, Ott PA et al. (2015) Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: interim results from a phase Ib study. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 5510)
43.
go back to reference Disis ML, Patel MR, Pant S et al. (2015) Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with previously treated, recurrent or refractory ovarian cancer: a phase Ib, open-label expansion trial. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 5509) Disis ML, Patel MR, Pant S et al. (2015) Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with previously treated, recurrent or refractory ovarian cancer: a phase Ib, open-label expansion trial. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 5509)
44.
go back to reference Seiwert TY, Burtness B, Weiss J et al. (2014) A phase Ib study of MK-3475 in patients with human papilloma virus (HPV)-associated and non-HPV-associated head and neck (H/N) cancer. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 6011) Seiwert TY, Burtness B, Weiss J et al. (2014) A phase Ib study of MK-3475 in patients with human papilloma virus (HPV)-associated and non-HPV-associated head and neck (H/N) cancer. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 6011)
45.
go back to reference Segal NH, Antonia SJ, Brahmer JR, et al. (2014) Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 3002) Segal NH, Antonia SJ, Brahmer JR, et al. (2014) Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. 2014 ASCO Annual Meeting. J Clin Oncol 32:5s (suppl: abstr 3002)
46.
go back to reference Plimack ER, Gupta S, Bellmunt J et al. (2014) Phase 1B study of pembrolizumab (pembro; MK-3475) in patients (pts) with advanced urothelial tract cancer. Ann Oncol (Meeting Abstracts) 25:LBA23A Plimack ER, Gupta S, Bellmunt J et al. (2014) Phase 1B study of pembrolizumab (pembro; MK-3475) in patients (pts) with advanced urothelial tract cancer. Ann Oncol (Meeting Abstracts) 25:LBA23A
47.
go back to reference Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature (Lond) 515:558–562CrossRef Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature (Lond) 515:558–562CrossRef
48.
go back to reference Bang YJ, Chung HC, Shankaran V, et al. (2015) Relationship between PD-L1 expression and clinical outcomes in patients with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (MK-3475) in KEYNOTE-012. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 4001) Bang YJ, Chung HC, Shankaran V, et al. (2015) Relationship between PD-L1 expression and clinical outcomes in patients with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (MK-3475) in KEYNOTE-012. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 4001)
49.
go back to reference Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520CrossRefPubMed Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520CrossRefPubMed
50.
go back to reference Doi T, Piha-Paul SA, Jalal SI, et al. (2015) Pembrolizumab (MK-3475) for patients (pts) with advanced esophageal carcinoma. Preliminary results from KEYNOTE-028. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 4010) Doi T, Piha-Paul SA, Jalal SI, et al. (2015) Pembrolizumab (MK-3475) for patients (pts) with advanced esophageal carcinoma. Preliminary results from KEYNOTE-028. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 4010)
51.
go back to reference El-Khoueiry AB, Melero I, Crocenzi TS et al. (2015) Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr LBA101) El-Khoueiry AB, Melero I, Crocenzi TS et al. (2015) Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr LBA101)
52.
go back to reference Nanda R, Chow L, Dees E, et al. (2014) A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. San Antonio Breast Cancer Symposium, 2014 December 9–13, San Antonio, TX Nanda R, Chow L, Dees E, et al. (2014) A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. San Antonio Breast Cancer Symposium, 2014 December 9–13, San Antonio, TX
53.
go back to reference Emens L, Braiteh F, Cassier P et al. (2014) Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. 2014 San Antonio Breast Cancer Symposium, 2014 December 9–13, San Antonio, TX Emens L, Braiteh F, Cassier P et al. (2014) Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. 2014 San Antonio Breast Cancer Symposium, 2014 December 9–13, San Antonio, TX
54.
go back to reference Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319CrossRefPubMed Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319CrossRefPubMed
55.
go back to reference Moskowitz C, Ribrag V, Michot J-M, et al. (2014) PD-1 Blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: preliminary results from a phase 1b study (KEYNOTE-013). 56th Annual Meeting of the American Society of Hematology, December 6–9, 2014 (abstr 290) Moskowitz C, Ribrag V, Michot J-M, et al. (2014) PD-1 Blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: preliminary results from a phase 1b study (KEYNOTE-013). 56th Annual Meeting of the American Society of Hematology, December 6–9, 2014 (abstr 290)
56.
go back to reference Lesokhin AM, Ansell SM, Armand P et al. (2014) Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. 56th Annual Meeting of the American Society of Hematology, December 6–9, 2014 (abstr 291) Lesokhin AM, Ansell SM, Armand P et al. (2014) Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. 56th Annual Meeting of the American Society of Hematology, December 6–9, 2014 (abstr 291)
57.
go back to reference Chinai JM, Janakiram M, Chen F et al (2015) New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci 36:587–595CrossRefPubMed Chinai JM, Janakiram M, Chen F et al (2015) New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci 36:587–595CrossRefPubMed
58.
59.
60.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34CrossRefPubMed Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34CrossRefPubMed
61.
go back to reference Hammers HJ, Plimack ER, Infante JR, et al. (2015) Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). 2015 ASCO Annual Meeting. J Clin Oncol 32 (suppl: abstr 4504) Hammers HJ, Plimack ER, Infante JR, et al. (2015) Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). 2015 ASCO Annual Meeting. J Clin Oncol 32 (suppl: abstr 4504)
62.
go back to reference Patnaik A, Socinski MA, Gubens MA et al.(2015) Phase 1 study of pembrolizumab (pembro; MK-3475) plus ipilimumab (IPI) as second-line therapy for advanced non-small cell lung cancer (NSCLC): KEYNOTE-021 cohort D. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 8011) Patnaik A, Socinski MA, Gubens MA et al.(2015) Phase 1 study of pembrolizumab (pembro; MK-3475) plus ipilimumab (IPI) as second-line therapy for advanced non-small cell lung cancer (NSCLC): KEYNOTE-021 cohort D. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 8011)
63.
64.
65.
66.
67.
69.
go back to reference Callahan M. (2015) Understanding the biology behind responses to immunotherapy. 2014 ASCO Annual Meeting. Developmental therapeutics—immunotherapy (Oral Abstract Session as discussant) Callahan M. (2015) Understanding the biology behind responses to immunotherapy. 2014 ASCO Annual Meeting. Developmental therapeutics—immunotherapy (Oral Abstract Session as discussant)
70.
go back to reference Lipson EJ, Forde PM, Hammers HJ et al (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 42:587–600CrossRefPubMed Lipson EJ, Forde PM, Hammers HJ et al (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 42:587–600CrossRefPubMed
71.
go back to reference Taube JM, Anders RA, Young GD et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127–137CrossRef Taube JM, Anders RA, Young GD et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127–137CrossRef
72.
go back to reference Garber K (2015) Predictive biomarkers for checkpoints, first tests approved. Nat Biotechnol 33:1217–1218CrossRefPubMed Garber K (2015) Predictive biomarkers for checkpoints, first tests approved. Nat Biotechnol 33:1217–1218CrossRefPubMed
73.
go back to reference Peng J, Hamanishi J, Matsumura N et al (2015) Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res 75:5034–5045CrossRefPubMed Peng J, Hamanishi J, Matsumura N et al (2015) Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res 75:5034–5045CrossRefPubMed
74.
go back to reference Abiko K, Mandai M, Hamanishi J et al (2013) PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res 16:1363–1374CrossRef Abiko K, Mandai M, Hamanishi J et al (2013) PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res 16:1363–1374CrossRef
75.
go back to reference Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125:3384–3391CrossRefPubMed Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125:3384–3391CrossRefPubMed
76.
go back to reference Antonia SJ, Bendell JC, Taylor MH, et al. (2015) Phase I/II study of nivolumab with or without ipilimumab for treatment of recurrent small cell lung cancer (SCLC): CA209-032. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 7503) Antonia SJ, Bendell JC, Taylor MH, et al. (2015) Phase I/II study of nivolumab with or without ipilimumab for treatment of recurrent small cell lung cancer (SCLC): CA209-032. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 7503)
77.
go back to reference Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature (Lond) 500:415–421CrossRef Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature (Lond) 500:415–421CrossRef
78.
go back to reference Pardoll M (2015) The ABCs of cancer immunotherapy. 2015 ASCO Annual Meeting, Education Session Pardoll M (2015) The ABCs of cancer immunotherapy. 2015 ASCO Annual Meeting, Education Session
79.
go back to reference Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982CrossRefPubMed Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982CrossRefPubMed
80.
go back to reference Gubin MM, Zhang X, Schuster H et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature (Lond) 515:577–581CrossRef Gubin MM, Zhang X, Schuster H et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature (Lond) 515:577–581CrossRef
81.
82.
go back to reference Rizvi NA, Hellmann MD, Snyder KA et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348:124–128CrossRefPubMed Rizvi NA, Hellmann MD, Snyder KA et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348:124–128CrossRefPubMed
83.
go back to reference Naidoo J, Page DB, Li BT et al (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26:2375–2391PubMed Naidoo J, Page DB, Li BT et al (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26:2375–2391PubMed
84.
go back to reference Champiat S, Lambotte O, Barreau E, et al. (2015) Management of Immune Checkpoint Blockade Dysimmune Toxicities: a collaborative position paper. Ann Oncol. pii: mdv623 [Epub ahead of print] Champiat S, Lambotte O, Barreau E, et al. (2015) Management of Immune Checkpoint Blockade Dysimmune Toxicities: a collaborative position paper. Ann Oncol. pii: mdv623 [Epub ahead of print]
85.
go back to reference Weber JS, Antonia SJ, Topalian SL, et al. (2015) Safety profile of nivolumab (NIVO) in patients (pts) with advanced melanoma (MEL): a pooled analysis. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 9018) Weber JS, Antonia SJ, Topalian SL, et al. (2015) Safety profile of nivolumab (NIVO) in patients (pts) with advanced melanoma (MEL): a pooled analysis. 2015 ASCO Annual Meeting. J Clin Oncol 33 (suppl: abstr 9018)
88.
go back to reference Postow MA (2015) Managing immunotherapy-related side effects. 2015 ASCO Annual Meeting. The ABCs of Cancer Immunotherapy Postow MA (2015) Managing immunotherapy-related side effects. 2015 ASCO Annual Meeting. The ABCs of Cancer Immunotherapy
89.
go back to reference Sanlorenzo M, Vujic I, Daud A et al (2015) Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol 151:1206–1212CrossRefPubMed Sanlorenzo M, Vujic I, Daud A et al (2015) Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol 151:1206–1212CrossRefPubMed
90.
go back to reference Saltz L (2015) Perspectives on Value. 2015 ASCO Annual Meeting, Plenary Session Including the Science of Oncology Award and Lecture Saltz L (2015) Perspectives on Value. 2015 ASCO Annual Meeting, Plenary Session Including the Science of Oncology Award and Lecture
91.
go back to reference Schnipper LE, Davidson NE, Wollins DS et al (2015) American Society of Clinical Oncology Statement: a conceptual framework to assess the value of cancer treatment options. J Clin Oncol 33:2563–2577CrossRefPubMed Schnipper LE, Davidson NE, Wollins DS et al (2015) American Society of Clinical Oncology Statement: a conceptual framework to assess the value of cancer treatment options. J Clin Oncol 33:2563–2577CrossRefPubMed
93.
go back to reference Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRefPubMed Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRefPubMed
94.
go back to reference Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570CrossRefPubMed Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570CrossRefPubMed
Metadata
Title
PD-1/PD-L1 blockade in cancer treatment: perspectives and issues
Authors
Junzo Hamanishi
Masaki Mandai
Noriomi Matsumura
Kaoru Abiko
Tsukasa Baba
Ikuo Konishi
Publication date
01-06-2016
Publisher
Springer Japan
Published in
International Journal of Clinical Oncology / Issue 3/2016
Print ISSN: 1341-9625
Electronic ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-016-0959-z

Other articles of this Issue 3/2016

International Journal of Clinical Oncology 3/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine