Skip to main content
Top
Published in: Neurosurgical Review 1/2020

01-02-2020 | Original Article

Novel method of intraoperative ocular movement monitoring using a piezoelectric device: experimental study of ocular motor nerve activating piezoelectric potentials (OMNAPP) and clinical application for skull base surgeries

Authors: Kiyohiko Sakata, Keiko Suematsu, Nobuyuki Takeshige, Yui Nagata, Kimihiko Orito, Naohisa Miyagi, Naoki Sakai, Tsunekazu Koseki, Motohiro Morioka

Published in: Neurosurgical Review | Issue 1/2020

Login to get access

Abstract

Intraoperative monitoring systems that utilize various evoked potentials for the detection and/or preservation of cranial nerves have become increasingly common due to recent technical and commercial developments, particularly during skull base surgeries. We established a novel system for the intraoperative monitoring of the extraocular motor nerves (eOMNs) using a piezoelectric device capable of detecting imperceptible vibrations induced by ocular movement, with sensors placed on the eyelids alone. We first evaluated the efficacy and reliability of this device for the intraoperative monitoring of eOMNs in two Beagle dogs. Based on the results, we then determined the appropriate stimulation parameters for use in human surgical cases involving removal of various skull base tumors. Animal experiments revealed that a 0.4 mA monopolar electrical stimulation was required to elicit significant responses and that these responses were not inferior to those obtained via the electrooculogram/electromyogram. Significant responses were also detected in preliminary clinical investigations in human patients, following both direct and indirect monopolar electrical stimulation of the oculomotor and abducens nerves, although obtaining responses from the trochlear nerve was difficult. Intraoperative monitoring using a piezoelectric device provides a simple and reliable method for detecting eOMNs, especially the oculomotor and abducens nerves. This monitoring system can be adapted to various surgeries for skull base tumor.
Literature
2.
go back to reference Alberti O, Sure U, Riegel T, Bertalanffy H (2001) Image-guided placement of eye muscle electrodes for intraoperative cranial nerve monitoring. Neurosurgery 49:660–664PubMed Alberti O, Sure U, Riegel T, Bertalanffy H (2001) Image-guided placement of eye muscle electrodes for intraoperative cranial nerve monitoring. Neurosurgery 49:660–664PubMed
3.
go back to reference Campos EC, Bolzani R, Schiavi C, Scorolli L, Piaggi S (1995) Technique of simultaneous recording of EMG from various extraocular muscles under EOG control. Graefes Arch Clin Exp Ophthalmol 233:371–373CrossRefPubMed Campos EC, Bolzani R, Schiavi C, Scorolli L, Piaggi S (1995) Technique of simultaneous recording of EMG from various extraocular muscles under EOG control. Graefes Arch Clin Exp Ophthalmol 233:371–373CrossRefPubMed
4.
go back to reference Fukaya C, Katayama Y, Kasai M, Kurihara J, Yamamoto T (2000) Intraoperative electro-oculographic monitoring for skull base surgery. Skull Base Surg 10:11–15CrossRefPubMedPubMedCentral Fukaya C, Katayama Y, Kasai M, Kurihara J, Yamamoto T (2000) Intraoperative electro-oculographic monitoring for skull base surgery. Skull Base Surg 10:11–15CrossRefPubMedPubMedCentral
6.
go back to reference Kawaguchi M, Ohnishi H, Sakamoto T, Shimizu K, Karasawa J, Furuya H (1996) Intraoperative electrophysiologic monitoring of ocular motor nerves under conditions of partial neuromuscular blockade during skull base surgery. Skull Base Surg 6:9–15CrossRefPubMedPubMedCentral Kawaguchi M, Ohnishi H, Sakamoto T, Shimizu K, Karasawa J, Furuya H (1996) Intraoperative electrophysiologic monitoring of ocular motor nerves under conditions of partial neuromuscular blockade during skull base surgery. Skull Base Surg 6:9–15CrossRefPubMedPubMedCentral
7.
go back to reference Kawamata T, Ishii N, Amano K, Namioka T, Hori T, Okada Y (2013) A novel simple real-time electrooculographic monitoring system during transsphenoidal surgeries to prevent postoperative extraocular motor nerve dysfunction. Neurosurg Rev 36:371–376CrossRefPubMed Kawamata T, Ishii N, Amano K, Namioka T, Hori T, Okada Y (2013) A novel simple real-time electrooculographic monitoring system during transsphenoidal surgeries to prevent postoperative extraocular motor nerve dysfunction. Neurosurg Rev 36:371–376CrossRefPubMed
10.
go back to reference López JR (2011) Neurophysiologic intraoperative monitoring of the oculomotor, trochlear, and abducens nerves. J Clin Neurophysiol 28:543–550CrossRefPubMed López JR (2011) Neurophysiologic intraoperative monitoring of the oculomotor, trochlear, and abducens nerves. J Clin Neurophysiol 28:543–550CrossRefPubMed
11.
go back to reference Marmor MF, Zrenner E (1993) Standard for clinical electrooculography. International Society for Clinical Electrophysiology of Vision. Arch Ophthalmol 111:601–604CrossRefPubMed Marmor MF, Zrenner E (1993) Standard for clinical electrooculography. International Society for Clinical Electrophysiology of Vision. Arch Ophthalmol 111:601–604CrossRefPubMed
12.
go back to reference Møller AR (ed) (2011) Practical aspects of monitoring cranial motor nerves. In: Intraoperative neurophysiological monitoring, 3rd edn. Humana Press, Totowa, pp 235–260 Møller AR (ed) (2011) Practical aspects of monitoring cranial motor nerves. In: Intraoperative neurophysiological monitoring, 3rd edn. Humana Press, Totowa, pp 235–260
13.
go back to reference Oyama K, Kawana F, Sunagawa K, Fukuhara N, Yamada S (2014) A handmade eye movement monitor using a piezoelectric device during transsphenoidal surgery. Neurosurg Rev 37:287–290CrossRefPubMed Oyama K, Kawana F, Sunagawa K, Fukuhara N, Yamada S (2014) A handmade eye movement monitor using a piezoelectric device during transsphenoidal surgery. Neurosurg Rev 37:287–290CrossRefPubMed
14.
go back to reference Sasaki T, Suzuki K, Matsumoto M, Sato T, Kodama N, Yago K (2002) Origins of surface potentials evoked by electrical stimulation of oculomotor nerves: are they related to electrooculographic or electromyographic events? J Neurosurg 97:941–944CrossRefPubMed Sasaki T, Suzuki K, Matsumoto M, Sato T, Kodama N, Yago K (2002) Origins of surface potentials evoked by electrical stimulation of oculomotor nerves: are they related to electrooculographic or electromyographic events? J Neurosurg 97:941–944CrossRefPubMed
15.
go back to reference Schlake HP, Goldbrunner R, Siebert M, Behr R, Roosen K (2001) Intra-operative electromyographic monitoring of extra-ocular motor nerves (Nn. III, IV) in skull base surgery. Acta Neurochir 143:251–261CrossRefPubMed Schlake HP, Goldbrunner R, Siebert M, Behr R, Roosen K (2001) Intra-operative electromyographic monitoring of extra-ocular motor nerves (Nn. III, IV) in skull base surgery. Acta Neurochir 143:251–261CrossRefPubMed
16.
go back to reference Sekiya T, Iwabuchi T, Suzuki S, Maeda S, Hatayama T, Takiguchi M (1990) Recordings of evoked electromyographic responses from the extraocular muscles to monitor the oculomotor, trochlear, and abducens nerve function during skull base and orbital surgery. No Shinkei Geka (Jpn) 18:447–451 Sekiya T, Iwabuchi T, Suzuki S, Maeda S, Hatayama T, Takiguchi M (1990) Recordings of evoked electromyographic responses from the extraocular muscles to monitor the oculomotor, trochlear, and abducens nerve function during skull base and orbital surgery. No Shinkei Geka (Jpn) 18:447–451
17.
go back to reference Sekiya T, Hatayama T, Iwabuchi T, Maeda S (1992) A ring electrode to record extraocular muscle activities during skull base surgery. Acta Neurochir 117:66–69CrossRefPubMed Sekiya T, Hatayama T, Iwabuchi T, Maeda S (1992) A ring electrode to record extraocular muscle activities during skull base surgery. Acta Neurochir 117:66–69CrossRefPubMed
18.
go back to reference Sekiya T, Hatayama T, Iwabuchi T, Maeda S (1993) Intraoperative recordings of evoked extraocular muscle activities to monitor ocular motor nerve function. Neurosurgery 32:227–235 discussion 235CrossRefPubMed Sekiya T, Hatayama T, Iwabuchi T, Maeda S (1993) Intraoperative recordings of evoked extraocular muscle activities to monitor ocular motor nerve function. Neurosurgery 32:227–235 discussion 235CrossRefPubMed
19.
go back to reference Sekiya T, Hatayama T, Shimamura N, Suzuki S, Tamura M (1997) A simplified method to monitor oculomotor nerve function in midbrain surgery: recordings of compound muscle action potentials by percutaneous superior orbital electrode. No Shinkei Geka (Jpn) 25:987–992 Sekiya T, Hatayama T, Shimamura N, Suzuki S, Tamura M (1997) A simplified method to monitor oculomotor nerve function in midbrain surgery: recordings of compound muscle action potentials by percutaneous superior orbital electrode. No Shinkei Geka (Jpn) 25:987–992
20.
go back to reference Sheshadri V, Bharadwaj S, Chandramouli BA (2016) Intra-operative electrooculographic monitoring to prevent post-operative extraocular motor nerve dysfunction during skull base surgery. Indian J Anaesth 60:560–565CrossRefPubMedPubMedCentral Sheshadri V, Bharadwaj S, Chandramouli BA (2016) Intra-operative electrooculographic monitoring to prevent post-operative extraocular motor nerve dysfunction during skull base surgery. Indian J Anaesth 60:560–565CrossRefPubMedPubMedCentral
21.
go back to reference Thirumala PD, Mohanraj SK, Habeych M, Wichman K, Chang YF, Gardner P, Snyderman C, Crammond DJ, Balzer J (2013) Value of free-run electromyographic monitoring of extraocular cranial nerves during expanded endonasal surgery (EES) of the skull base. J Neurol Surg Rep 74:43–50CrossRefPubMedPubMedCentral Thirumala PD, Mohanraj SK, Habeych M, Wichman K, Chang YF, Gardner P, Snyderman C, Crammond DJ, Balzer J (2013) Value of free-run electromyographic monitoring of extraocular cranial nerves during expanded endonasal surgery (EES) of the skull base. J Neurol Surg Rep 74:43–50CrossRefPubMedPubMedCentral
22.
go back to reference Zhu NX, Meng YQ, Feng BH, Wang XH, Li XY, Yang M, Zhu SG, Li ST (2009) Study on surgical approaches and electrode implantation of oculomotor nerve and inferior obliquus in beagle dog. Saudi Med J 30:358–364PubMed Zhu NX, Meng YQ, Feng BH, Wang XH, Li XY, Yang M, Zhu SG, Li ST (2009) Study on surgical approaches and electrode implantation of oculomotor nerve and inferior obliquus in beagle dog. Saudi Med J 30:358–364PubMed
Metadata
Title
Novel method of intraoperative ocular movement monitoring using a piezoelectric device: experimental study of ocular motor nerve activating piezoelectric potentials (OMNAPP) and clinical application for skull base surgeries
Authors
Kiyohiko Sakata
Keiko Suematsu
Nobuyuki Takeshige
Yui Nagata
Kimihiko Orito
Naohisa Miyagi
Naoki Sakai
Tsunekazu Koseki
Motohiro Morioka
Publication date
01-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Neurosurgical Review / Issue 1/2020
Print ISSN: 0344-5607
Electronic ISSN: 1437-2320
DOI
https://doi.org/10.1007/s10143-018-1028-z

Other articles of this Issue 1/2020

Neurosurgical Review 1/2020 Go to the issue