Skip to main content
Top
Published in: Emergency Radiology 5/2012

01-10-2012 | Original Article

Effects of patient size on radiation dose reduction and image quality in low-kVp CT pulmonary angiography performed with reduced IV contrast dose

Authors: Aaron Sodickson, Michael Weiss

Published in: Emergency Radiology | Issue 5/2012

Login to get access

Abstract

The purpose of the study is to evaluate image quality and radiation exposure as a function of patient size for CT pulmonary angiography (CTPA) performed at reduced tube voltage and reduced intravenous (IV) contrast dose. We reviewed consecutive CTPAs performed between 9/1/2010 and 10/31/2010 on a 128-slice Siemens AS+ scanner using automated tube current modulation with quality reference mAs 200 and IV contrast concentration 370 mg I/ml followed by a saline flush: 99 scans at 120 kVp using 75 ml of contrast at 5 ml/s and 53 scans on patients lighter than 175 lbs at 100 kVp using 50 ml of contrast at 4 ml/s. We measured patient size (mean water-equivalent diameter) using a topogram analysis tool, signal (mean CT density) and noise (standard deviation) in the main pulmonary artery (MPA) on axial images, and calculated local CTDIvol from the kVp and mAs. Linear regression models were created for dependent variables ln(CTDIvol), signal, noise, and signal to noise ratio (SNR) as a function of independent variables size, age, gender, and kVp. After controlling for other variables, scanning at 100 kVp yielded CTDIvol reduction of 33 % (p < 0.0001), signal increase of 96 HU (p < 0.0001), and increased image noise (p < 0.0001), but without significant difference in SNR (p = 0.99). Relative to 120 kVp, 100-kVp CTPA allows simultaneous reduction of radiation exposure by 33 % and IV contrast dose by 33 % while maintaining image quality. Scanning at 100 kVp is recommended in all patients for whom the required mAs does not exceed maximum X-ray tube output.
Literature
1.
go back to reference Hurwitz LM, Yoshizumi TT, Goodman PC et al (2009) Radiation dose savings for adult pulmonary embolus 64-MDCT using bismuth breast shields, lower peak kilovoltage, and automatic tube current modulation. AJR 192(1):244–253PubMedCrossRef Hurwitz LM, Yoshizumi TT, Goodman PC et al (2009) Radiation dose savings for adult pulmonary embolus 64-MDCT using bismuth breast shields, lower peak kilovoltage, and automatic tube current modulation. AJR 192(1):244–253PubMedCrossRef
2.
go back to reference Hunsaker AR, Oliva IB, Cai T et al (2010) Contrast opacification using a reduced volume of iodinated contrast material and low peak kilovoltage in pulmonary CT angiography: objective and subjective evaluation. AJR 195(2):W118PubMedCrossRef Hunsaker AR, Oliva IB, Cai T et al (2010) Contrast opacification using a reduced volume of iodinated contrast material and low peak kilovoltage in pulmonary CT angiography: objective and subjective evaluation. AJR 195(2):W118PubMedCrossRef
3.
go back to reference Holmquist F, Nyman U (2006) Eighty-peak kilovoltage 16-channel multidetector computed tomography and reduced contrast-medium doses tailored to body weight to diagnose pulmonary embolism in azotaemic patients. Eur Radiol 16(5):1165–1176PubMedCrossRef Holmquist F, Nyman U (2006) Eighty-peak kilovoltage 16-channel multidetector computed tomography and reduced contrast-medium doses tailored to body weight to diagnose pulmonary embolism in azotaemic patients. Eur Radiol 16(5):1165–1176PubMedCrossRef
4.
go back to reference Szucs-Farkas Z, Kurmann L, Strautz T et al (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43(12):871–876PubMedCrossRef Szucs-Farkas Z, Kurmann L, Strautz T et al (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43(12):871–876PubMedCrossRef
5.
go back to reference Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V (2007) Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 245(2):577–583PubMedCrossRef Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V (2007) Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 245(2):577–583PubMedCrossRef
6.
go back to reference Matsuoka S, Hunsaker AR, Gill RR et al (2009) Vascular enhancement and image quality of MDCT pulmonary angiography in 400 cases: comparison of standard and low kilovoltage settings. AJR 192(6):1651–1656PubMedCrossRef Matsuoka S, Hunsaker AR, Gill RR et al (2009) Vascular enhancement and image quality of MDCT pulmonary angiography in 400 cases: comparison of standard and low kilovoltage settings. AJR 192(6):1651–1656PubMedCrossRef
7.
go back to reference Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT Angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241(3):899–907PubMedCrossRef Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT Angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241(3):899–907PubMedCrossRef
8.
go back to reference Bae KT, Tao C, Gürel S et al (2007) Effect of patient weight and scanning duration on contrast enhancement during pulmonary multidetector CT angiography. Radiology 242(2):582–589PubMedCrossRef Bae KT, Tao C, Gürel S et al (2007) Effect of patient weight and scanning duration on contrast enhancement during pulmonary multidetector CT angiography. Radiology 242(2):582–589PubMedCrossRef
9.
go back to reference Mettler FA, Bhargavan M, Faulkner K et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 253(2):520–531PubMedCrossRef Mettler FA, Bhargavan M, Faulkner K et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 253(2):520–531PubMedCrossRef
10.
go back to reference Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361(9):849–857PubMedCrossRef Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361(9):849–857PubMedCrossRef
11.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284PubMedCrossRef Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284PubMedCrossRef
12.
go back to reference Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2077PubMedCrossRef Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2077PubMedCrossRef
13.
go back to reference Sodickson A, Baeyens PF, Andriole KP et al (2009) Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 251(1):175–184PubMedCrossRef Sodickson A, Baeyens PF, Andriole KP et al (2009) Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 251(1):175–184PubMedCrossRef
14.
go back to reference Barrett BJ, Parfrey PS (2006) Preventing nephropathy induced by contrast medium. N Engl J Med 354(4):379–386PubMedCrossRef Barrett BJ, Parfrey PS (2006) Preventing nephropathy induced by contrast medium. N Engl J Med 354(4):379–386PubMedCrossRef
15.
go back to reference Routhier J, Piazzo K, Sodickson A (2011) Contrast and cost savings by implementation of a multidose bulk IV contrast delivery system. J Am Coll Radiol 8(4):265–270PubMedCrossRef Routhier J, Piazzo K, Sodickson A (2011) Contrast and cost savings by implementation of a multidose bulk IV contrast delivery system. J Am Coll Radiol 8(4):265–270PubMedCrossRef
16.
go back to reference Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18(9):1809–1817PubMedCrossRef Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18(9):1809–1817PubMedCrossRef
17.
go back to reference Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237(3):945–951PubMedCrossRef Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237(3):945–951PubMedCrossRef
18.
go back to reference Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233(3):649–657PubMedCrossRef Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233(3):649–657PubMedCrossRef
19.
go back to reference Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61PubMedCrossRef Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61PubMedCrossRef
20.
go back to reference Gunn MLD, Kohr JR (2010) State of the art: technologies for computed tomography dose reduction. Emerg Radiol 17:209–218PubMedCrossRef Gunn MLD, Kohr JR (2010) State of the art: technologies for computed tomography dose reduction. Emerg Radiol 17:209–218PubMedCrossRef
21.
go back to reference Kubo T, Lin PJ, Stiller W et al (2008) Radiation dose reduction in chest CT: a review. AJR 190(2):335–343PubMedCrossRef Kubo T, Lin PJ, Stiller W et al (2008) Radiation dose reduction in chest CT: a review. AJR 190(2):335–343PubMedCrossRef
22.
go back to reference Luaces M, Akers S, Litt H (2009) Low kVp imaging for dose reduction in dual-source cardiac CT. Int J Cardiovasc Imaging (formerly Cardiac Imaging) 25:165–175CrossRef Luaces M, Akers S, Litt H (2009) Low kVp imaging for dose reduction in dual-source cardiac CT. Int J Cardiovasc Imaging (formerly Cardiac Imaging) 25:165–175CrossRef
23.
go back to reference Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310PubMedCrossRef Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310PubMedCrossRef
24.
go back to reference Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37(1):234–243PubMedCrossRef Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37(1):234–243PubMedCrossRef
26.
go back to reference Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231(1):169–174PubMedCrossRef Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231(1):169–174PubMedCrossRef
27.
go back to reference Jones SE, Wittram C (2005) The indeterminate CT pulmonary angiogram: imaging characteristics and patient clinical outcome. Radiology 237(1):329–337PubMedCrossRef Jones SE, Wittram C (2005) The indeterminate CT pulmonary angiogram: imaging characteristics and patient clinical outcome. Radiology 237(1):329–337PubMedCrossRef
28.
go back to reference McCollough CH, Leng S, Yu L et al (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316PubMedCrossRef McCollough CH, Leng S, Yu L et al (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316PubMedCrossRef
29.
go back to reference Boone JM, Strauss KJ, Cody DD et al (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. Am Assoc Phys Med. Report no. 204:1–28 Boone JM, Strauss KJ, Cody DD et al (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. Am Assoc Phys Med. Report no. 204:1–28
30.
go back to reference Israel GM, Cicchiello L, Brink J, Huda W (2010) Patient size and radiation exposure in thoracic, pelvic, and abdominal CT examinations performed with automatic exposure control. AJR 195(6):1342–1346PubMedCrossRef Israel GM, Cicchiello L, Brink J, Huda W (2010) Patient size and radiation exposure in thoracic, pelvic, and abdominal CT examinations performed with automatic exposure control. AJR 195(6):1342–1346PubMedCrossRef
31.
go back to reference Angel E, Yaghmai N, Jude CM et al (2009) Dose to radiosensitive organs during routine chest CT: effects of tube current modulation. AJR 193(5):1340–1345PubMedCrossRef Angel E, Yaghmai N, Jude CM et al (2009) Dose to radiosensitive organs during routine chest CT: effects of tube current modulation. AJR 193(5):1340–1345PubMedCrossRef
32.
go back to reference Haaga JR (2001) Radiation dose management: weighing risk versus benefit. AJR 177(2):289–291PubMed Haaga JR (2001) Radiation dose management: weighing risk versus benefit. AJR 177(2):289–291PubMed
33.
go back to reference Kalra MK, Prasad S, Saini S et al (2002) Clinical comparison of standard-dose and 50 % reduced-dose abdominal CT: effect on image quality. AJR 179(5):1101–1106PubMed Kalra MK, Prasad S, Saini S et al (2002) Clinical comparison of standard-dose and 50 % reduced-dose abdominal CT: effect on image quality. AJR 179(5):1101–1106PubMed
34.
go back to reference Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236(2):565–571PubMedCrossRef Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236(2):565–571PubMedCrossRef
35.
go back to reference Sodickson A (2012) Strategies for reducing radiation exposure with multi-detector CT. Radiol Clin N Am 50(1):1–14PubMedCrossRef Sodickson A (2012) Strategies for reducing radiation exposure with multi-detector CT. Radiol Clin N Am 50(1):1–14PubMedCrossRef
Metadata
Title
Effects of patient size on radiation dose reduction and image quality in low-kVp CT pulmonary angiography performed with reduced IV contrast dose
Authors
Aaron Sodickson
Michael Weiss
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
Emergency Radiology / Issue 5/2012
Print ISSN: 1070-3004
Electronic ISSN: 1438-1435
DOI
https://doi.org/10.1007/s10140-012-1046-z

Other articles of this Issue 5/2012

Emergency Radiology 5/2012 Go to the issue