Skip to main content
Top
Published in: Lasers in Medical Science 9/2022

Open Access 05-09-2022 | Prediabetes | Original Article

Quantification of glycated hemoglobin and glucose in vivo using Raman spectroscopy and artificial neural networks

Authors: Naara González-Viveros, Jorge Castro-Ramos, Pilar Gómez-Gil, Hector Humberto Cerecedo-Núñez, Francisco Gutiérrez-Delgado, Enrique Torres-Rasgado, Ricardo Pérez-Fuentes, Jose L. Flores-Guerrero

Published in: Lasers in Medical Science | Issue 9/2022

Login to get access

Abstract

Undiagnosed type 2 diabetes (T2D) remains a major public health concern. The global estimation of undiagnosed diabetes is about 46%, being this situation more critical in developing countries. Therefore, we proposed a non-invasive method to quantify glycated hemoglobin (HbA1c) and glucose in vivo. We developed a technique based on Raman spectroscopy, RReliefF as a feature selection method, and regression based on feed-forward artificial neural networks (FFNN). The spectra were obtained from the forearm, wrist, and index finger of 46 individuals. The use of FFNN allowed us to achieve an error in the predictive model of 0.69% for HbA1c and 30.12 mg/dL for glucose. Patients were classified according to HbA1c values into three categories: healthy, prediabetes, and T2D. The proposed method obtained a specificity and sensitivity of 87.50% and 80.77%, respectively. This work demonstrates the benefit of using artificial neural networks and feature selection techniques to enhance Raman spectra processing to determine glycated hemoglobin and glucose in patients with undiagnosed T2D.
Appendix
Available only for authorised users
Literature
5.
go back to reference Correr CJ, Coura-Vital W, Frade JCQP et al (2020) Prevalence of people at risk of developing type 2 diabetes mellitus and the involvement of community pharmacies in a national screening campaign: A pioneer action in Brazil. Diabetol Metab Syndr 12:1–11. https://doi.org/10.1186/S13098-020-00593-5 Correr CJ, Coura-Vital W, Frade JCQP et al (2020) Prevalence of people at risk of developing type 2 diabetes mellitus and the involvement of community pharmacies in a national screening campaign: A pioneer action in Brazil. Diabetol Metab Syndr 12:1–11. https://​doi.​org/​10.​1186/​S13098-020-00593-5
7.
go back to reference Heise HM, Delbeck S, Marbach R (2021) Noninvasive Monitoring of Glucose Using Near-Infrared Reflection Spectroscopy of Skin—Constraints and Effective Novel Strategy in Multivariate Calibration. Biosensors 11:64. https://doi.org/10.3390/BIOS11030064 Heise HM, Delbeck S, Marbach R (2021) Noninvasive Monitoring of Glucose Using Near-Infrared Reflection Spectroscopy of Skin—Constraints and Effective Novel Strategy in Multivariate Calibration. Biosensors 11:64. https://​doi.​org/​10.​3390/​BIOS11030064
11.
12.
go back to reference Pandey R (2015) Raman Spectroscopy-Based Sensing of Glycated Hemoglobin : Critical Analysis and Future Outlook Rishikesh Pandey. Journal of Postfoctoral Research 3:8–16 Pandey R (2015) Raman Spectroscopy-Based Sensing of Glycated Hemoglobin : Critical Analysis and Future Outlook Rishikesh Pandey. Journal of Postfoctoral Research 3:8–16
16.
go back to reference Villa-Manríquez F, Castro-Ramos J, Gutiérrez-Delgado F et al (2016) Raman spectroscopy and PCA-SVM as a non-invasive diagnostic tool to identify and classify qualitatively glycated hemoglobin levels in vivo. J Biomed Opt 6:1–6. https://doi.org/10.1002/jbio.201600169 Villa-Manríquez F, Castro-Ramos J, Gutiérrez-Delgado F et al (2016) Raman spectroscopy and PCA-SVM as a non-invasive diagnostic tool to identify and classify qualitatively glycated hemoglobin levels in vivo. J Biomed Opt 6:1–6. https://​doi.​org/​10.​1002/​jbio.​201600169
20.
go back to reference Campion A (2001) Infrared and Raman Spectroscopy of Biological Materials. Practical Spectroscopy Series. American Chemical Society Campion A (2001) Infrared and Raman Spectroscopy of Biological Materials. Practical Spectroscopy Series. American Chemical Society
23.
go back to reference Smith E, Dent G (2005) Modern Raman Spectrocopy: A Practical Approach Smith E, Dent G (2005) Modern Raman Spectrocopy: A Practical Approach
28.
go back to reference Schrader B (1995) Tools for infrared and Raman spectroscopy. In: Infrared and Raman Spectroscopy. John Wiley & Sons, Ltd, pp 63–188 Schrader B (1995) Tools for infrared and Raman spectroscopy. In: Infrared and Raman Spectroscopy. John Wiley & Sons, Ltd, pp 63–188
29.
go back to reference Smulko J, Wróbel MS (2017) Noise sources in Raman spectroscopy of biological objects. Dynamics and Fluctuations in Biomedical Photonics XIV 10063:54–60. https://doi.org/10.1117/12.2254807 Smulko J, Wróbel MS (2017) Noise sources in Raman spectroscopy of biological objects. Dynamics and Fluctuations in Biomedical Photonics XIV 10063:54–60. https://​doi.​org/​10.​1117/​12.​2254807
30.
go back to reference McCreery RL (2000) Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, Inc. McCreery RL (2000) Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, Inc.
36.
go back to reference León-Bejarano M, Dorantes-Méndez G, Ramírez-Elías M et al (2016) Fluorescence background removal method for biological Raman spectroscopy based on Empirical Mode Decomposition. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3610–3613. https://doi.org/10.1109/EMBC.2016.7591509 León-Bejarano M, Dorantes-Méndez G, Ramírez-Elías M et al (2016) Fluorescence background removal method for biological Raman spectroscopy based on Empirical Mode Decomposition. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3610–3613. https://​doi.​org/​10.​1109/​EMBC.​2016.​7591509
37.
go back to reference Chavarría-Lizárraga HN (2019) Biological tissue mapping with Raman Spectroscopy. Master Thesis, National Institute of Astrophysics, Optics and Electronics Chavarría-Lizárraga HN (2019) Biological tissue mapping with Raman Spectroscopy. Master Thesis, National Institute of Astrophysics, Optics and Electronics
40.
go back to reference Gómez-Gil P (2019) El reconocimiento de patrones y su aplicación a las señales digitales, Academia Mexicana de Computación. vol. 2 Gómez-Gil P (2019) El reconocimiento de patrones y su aplicación a las señales digitales, Academia Mexicana de Computación. vol. 2
42.
go back to reference Chaiken J, Finney WF, Knudson PE et al (2005) Effect of hemoglobin concentration variation on the accuracy and precision of glucose analysis using tissue modulated, noninvasive, in vivo Raman spectroscopy of human blood: a small clinical study. J of Biomedical Optics10:031111. https://doi.org/10.1117/1.1922147 Chaiken J, Finney WF, Knudson PE et al (2005) Effect of hemoglobin concentration variation on the accuracy and precision of glucose analysis using tissue modulated, noninvasive, in vivo Raman spectroscopy of human blood: a small clinical study. J of Biomedical Optics10:031111. https://​doi.​org/​10.​1117/​1.​1922147
49.
go back to reference Rosevear JW, Pfaff KJ, Service FJ et al (1969) Glucose oxidase method for continuous automated blood glucose determination. Clin Chem 15:680–698. https://doi.org/10.1093/clinchem/15.8.680 Rosevear JW, Pfaff KJ, Service FJ et al (1969) Glucose oxidase method for continuous automated blood glucose determination. Clin Chem 15:680–698. https://​doi.​org/​10.​1093/​clinchem/​15.​8.​680
51.
go back to reference American National Standard (2015) ANSI Z136.1 American National Standard for Safe Use of Lasers. American National Standard (2015) ANSI Z136.1 American National Standard for Safe Use of Lasers.
52.
go back to reference Colthup NB (1990) Introduction to infrared and Raman spectroscopy. Academic Press Colthup NB (1990) Introduction to infrared and Raman spectroscopy. Academic Press
58.
go back to reference Hilera González JR, Martínez Hernando VJ (1995) Redes neuronales artificiales: fundamentos, modelos y aplicaciones. RA-MA Hilera González JR, Martínez Hernando VJ (1995) Redes neuronales artificiales: fundamentos, modelos y aplicaciones. RA-MA
61.
go back to reference Tharwat A (2018) Classification assessment methods. Applied Computing and Informatics 17:168–192. https://doi.org/10.1016/J.ACI.2018.08.003/FULL/PDF Tharwat A (2018) Classification assessment methods. Applied Computing and Informatics 17:168–192. https://​doi.​org/​10.​1016/​J.​ACI.​2018.​08.​003/​FULL/​PDF
62.
go back to reference Duda Richard O, Stork David G, Hart Peter E (2000) Pattern Classification, Wiley Duda Richard O, Stork David G, Hart Peter E (2000) Pattern Classification, Wiley
63.
go back to reference Ranganathan S, Gribskov M, Nakai K et al. (2019) Encyclopedia of bioinformatics and computational biology. vol. 1–3, Elsevier, Amsterdam; Oxford; Cambridge Ranganathan S, Gribskov M, Nakai K et al. (2019) Encyclopedia of bioinformatics and computational biology. vol. 1–3, Elsevier, Amsterdam; Oxford; Cambridge
64.
go back to reference Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning. Springer, New York, New York, NYCrossRef Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning. Springer, New York, New York, NYCrossRef
68.
go back to reference Villanueva-Luna a. E, Castro-Ramos J, Vazquez-Montiel S et al (2012) Raman spectroscopy of blood in-vitro. Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV 8229:82291D. https://doi.org/10.1117/12.908689 Villanueva-Luna a. E, Castro-Ramos J, Vazquez-Montiel S et al (2012) Raman spectroscopy of blood in-vitro. Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV 8229:82291D. https://​doi.​org/​10.​1117/​12.​908689
87.
go back to reference Haykin S (2008) Neural Networks and Learning Machines, vol. 3 Haykin S (2008) Neural Networks and Learning Machines, vol. 3
Metadata
Title
Quantification of glycated hemoglobin and glucose in vivo using Raman spectroscopy and artificial neural networks
Authors
Naara González-Viveros
Jorge Castro-Ramos
Pilar Gómez-Gil
Hector Humberto Cerecedo-Núñez
Francisco Gutiérrez-Delgado
Enrique Torres-Rasgado
Ricardo Pérez-Fuentes
Jose L. Flores-Guerrero
Publication date
05-09-2022
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 9/2022
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03633-w

Other articles of this Issue 9/2022

Lasers in Medical Science 9/2022 Go to the issue