Skip to main content
Top
Published in: Lasers in Medical Science 1/2021

01-02-2021 | Laser | Original Article

Laser fabrication of structural bone: surface morphology and biomineralization assessment

Authors: Sucharita Banerjee, Mangesh V. Pantawane, Narendra B. Dahotre

Published in: Lasers in Medical Science | Issue 1/2021

Login to get access

Abstract

The current work explores the surface morphology of the laser-ablated bone using Yb-fiber coupled Nd:YAG laser (λ = 1064 nm) in continuous wave mode. As the laser-ablated region contains physiochemically modified carbonized and nonstructural region, it becomes unknown material for the body. Thus, biomineralization on such a laser-ablated region was assessed by in vitro immersion test in noncellular simulated body fluid. The presence of hydroxyapatite was detected in the precipitated mineral product using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction analysis. The effect of varying laser parameters on distribution of surface morphology features was identified and its corresponding effect on biomineralization was studied.
Literature
1.
go back to reference Dahotre NB, Joshi S (2016) Machining of bone and hard tissues. Springer, BerlinCrossRef Dahotre NB, Joshi S (2016) Machining of bone and hard tissues. Springer, BerlinCrossRef
2.
go back to reference Hosono N, Miwa T, Mukai Y, Takenaka S, Makino T, Fuji T (2009) Potential risk of thermal damage to cervical nerve roots by a high-speed drill. J Bone Joint Surg British Volume 91(11):1541–1544CrossRef Hosono N, Miwa T, Mukai Y, Takenaka S, Makino T, Fuji T (2009) Potential risk of thermal damage to cervical nerve roots by a high-speed drill. J Bone Joint Surg British Volume 91(11):1541–1544CrossRef
3.
go back to reference Smith NB, Temkin JM, Shapiro F, Hynynen K (2001) Thermal effects of focused ultrasound energy on bone tissue. Ultrasound Med Biol 27(10):1427–1433PubMedCrossRef Smith NB, Temkin JM, Shapiro F, Hynynen K (2001) Thermal effects of focused ultrasound energy on bone tissue. Ultrasound Med Biol 27(10):1427–1433PubMedCrossRef
4.
go back to reference Liao Y-S, Lin T-C, Lai C-Y, Chen Y-L, Chang H-H, Lin C-P (2014) Cutting performance of diamond-like carbon coated tips in ultrasonic osteotomy. J Dent Sci 9(1):63–68CrossRef Liao Y-S, Lin T-C, Lai C-Y, Chen Y-L, Chang H-H, Lin C-P (2014) Cutting performance of diamond-like carbon coated tips in ultrasonic osteotomy. J Dent Sci 9(1):63–68CrossRef
5.
go back to reference Ishii J, Fujita K, Komori T (2003) Laser surgery as a treatment for oral leukoplakia. Oral Oncol 39 (8):759–769PubMedCrossRef Ishii J, Fujita K, Komori T (2003) Laser surgery as a treatment for oral leukoplakia. Oral Oncol 39 (8):759–769PubMedCrossRef
6.
go back to reference Wang X, Zhang C, Matsumoto K (2005) In vivo study of the healing processes that occur in the jaws of rabbits following perforation by an Er,Cr : YSGG laser. Lasers Med Sci 20(1):21–27PubMedCrossRef Wang X, Zhang C, Matsumoto K (2005) In vivo study of the healing processes that occur in the jaws of rabbits following perforation by an Er,Cr : YSGG laser. Lasers Med Sci 20(1):21–27PubMedCrossRef
7.
go back to reference Rajitha Gunaratne G, Khan R, Fick D, Robertson B, Dahotre N, Ironside C (2017) A review of the physiological and histological effects of laser osteotomy. J Med Eng Technol 41(1):1–12PubMedCrossRef Rajitha Gunaratne G, Khan R, Fick D, Robertson B, Dahotre N, Ironside C (2017) A review of the physiological and histological effects of laser osteotomy. J Med Eng Technol 41(1):1–12PubMedCrossRef
8.
go back to reference Stock K, Diebolder R, Hausladen F, Hibst R (2014) Efficient bone cutting with the novel diode pumped Er:YAG laser system: in vitro investigation and optimization of the treatment parameters. Photonic Therapeutics and Diagnostics X, vol. 8926. International Society for Optics and Photonics, p. 89263P Stock K, Diebolder R, Hausladen F, Hibst R (2014) Efficient bone cutting with the novel diode pumped Er:YAG laser system: in vitro investigation and optimization of the treatment parameters. Photonic Therapeutics and Diagnostics X, vol. 8926. International Society for Optics and Photonics, p. 89263P
9.
go back to reference Wallace R, Whitters C, McGeough J, Muir A (2004) Experimental evaluation of laser cutting of bone. J Mater Process Technol 149(1-3):557–560CrossRef Wallace R, Whitters C, McGeough J, Muir A (2004) Experimental evaluation of laser cutting of bone. J Mater Process Technol 149(1-3):557–560CrossRef
10.
go back to reference Dahotre NB, Santhanakrishnan S (2016) Laser-assisted machining (LAM) of hard tissues and bones. July 12 2016, US Patent 9,387,041 Dahotre NB, Santhanakrishnan S (2016) Laser-assisted machining (LAM) of hard tissues and bones. July 12 2016, US Patent 9,387,041
11.
go back to reference Dahotre NB, Santhanakrishnan S, Joshi SS, Khan RJ, Fick DP, Robertson WB, Sheh RK, Ironside CN (2018) Integrated experimental and computational approach to laser machining of structural bone. Med Eng Phys 51:56–66PubMedCrossRef Dahotre NB, Santhanakrishnan S, Joshi SS, Khan RJ, Fick DP, Robertson WB, Sheh RK, Ironside CN (2018) Integrated experimental and computational approach to laser machining of structural bone. Med Eng Phys 51:56–66PubMedCrossRef
12.
go back to reference Dahotre NB, Santhanakrishnan S Laser-assisted machining (LAM) of hard tissues and bones. Jan. 29 2019, CIP, US Patent 10,188,519 Dahotre NB, Santhanakrishnan S Laser-assisted machining (LAM) of hard tissues and bones. Jan. 29 2019, CIP, US Patent 10,188,519
13.
go back to reference Pantawane MV, Dahotre NB (2019) Challenges and advances in osteotomy. Annals Bone Joint Surg 2 (1):1–4 Pantawane MV, Dahotre NB (2019) Challenges and advances in osteotomy. Annals Bone Joint Surg 2 (1):1–4
14.
go back to reference Lubatschowski H, Heisterkamp A, Will F, Serbin J, Bauer T, Fallnich C, Welling H, Mueller W, Schwab B, Singh AI et al (2002) Ultrafast laser pulses for medical applications, in Commercial and biomedical applications of ultrafast and free-electron lasers. International Society for Optics and Photonics 4633:38–50 Lubatschowski H, Heisterkamp A, Will F, Serbin J, Bauer T, Fallnich C, Welling H, Mueller W, Schwab B, Singh AI et al (2002) Ultrafast laser pulses for medical applications, in Commercial and biomedical applications of ultrafast and free-electron lasers. International Society for Optics and Photonics 4633:38–50
15.
go back to reference Pantawane MV, Robertson WB, Khan RJ, Fick DP, Dahotre NB (2019) Fundamentals of three-dimensional Yb-fiber Nd:YAG laser machining of structural bone. J Appl Phys 126:1–17CrossRef Pantawane MV, Robertson WB, Khan RJ, Fick DP, Dahotre NB (2019) Fundamentals of three-dimensional Yb-fiber Nd:YAG laser machining of structural bone. J Appl Phys 126:1–17CrossRef
17.
go back to reference Pantawane MV, Chipper RT, Robertson WB, et al. (2019) Evolution of surface morphology of Er:Yag laser-machined human bone. Lasers Med Sci, pp. 1–9 Pantawane MV, Chipper RT, Robertson WB, et al. (2019) Evolution of surface morphology of Er:Yag laser-machined human bone. Lasers Med Sci, pp. 1–9
18.
go back to reference Pantawane MV, Ho Y-H, Robertson WB, Khan RJ, Fick DP, Dahotre N (2020) Thermal assessment of ex vivo laser ablation of cortical bone. ACS Biomaterials Science & Engineering Pantawane MV, Ho Y-H, Robertson WB, Khan RJ, Fick DP, Dahotre N (2020) Thermal assessment of ex vivo laser ablation of cortical bone. ACS Biomaterials Science & Engineering
19.
go back to reference Sasaki KM, Aoki A, Ichinose S, Yoshino T, Yamada S, Ishikawa I (2002) Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers. J Periodontol 73(6):643–652PubMedCrossRef Sasaki KM, Aoki A, Ichinose S, Yoshino T, Yamada S, Ishikawa I (2002) Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers. J Periodontol 73(6):643–652PubMedCrossRef
20.
go back to reference Devlin H, Dickinson M, Freemont A, King T, Lloyd R (1994) Healing of bone defects prepared using the erbium-YAG laser. Lasers Med Sci 9(4):239–242CrossRef Devlin H, Dickinson M, Freemont A, King T, Lloyd R (1994) Healing of bone defects prepared using the erbium-YAG laser. Lasers Med Sci 9(4):239–242CrossRef
21.
go back to reference Charlton A, Dickinson M, King T, Freemont A (1990) Erbium-YAG and holmium-YAG laser ablation of bone. Lasers Med Sci 5(4):365–373CrossRef Charlton A, Dickinson M, King T, Freemont A (1990) Erbium-YAG and holmium-YAG laser ablation of bone. Lasers Med Sci 5(4):365–373CrossRef
22.
go back to reference Ivanenko M, Fahimi-Weber S, Mitra T, Wierich W, Hering P (2002) Bone tissue ablation with sub-μ s pulses of a q-switch CO2 laser: histological examination of thermal side effects. Lasers Med Sci 17(4):258–264PubMedCrossRef Ivanenko M, Fahimi-Weber S, Mitra T, Wierich W, Hering P (2002) Bone tissue ablation with sub-μ s pulses of a q-switch CO2 laser: histological examination of thermal side effects. Lasers Med Sci 17(4):258–264PubMedCrossRef
23.
go back to reference Fink B, Schneider T, Braunstein S, Schmielau G, Rüther W (1996) Holmium:YAG laser—induced aseptic bone necroses of the femoral condyle. Arthroscopy: The Journal of Arthroscopic Related Surgery 12(2):217–223PubMedCrossRef Fink B, Schneider T, Braunstein S, Schmielau G, Rüther W (1996) Holmium:YAG laser—induced aseptic bone necroses of the femoral condyle. Arthroscopy: The Journal of Arthroscopic Related Surgery 12(2):217–223PubMedCrossRef
24.
go back to reference Rupprecht S, Tangermann-Gerk K, Wiltfang J, Neukam FW, Schlegel A (2004) Sensor-based laser ablation for tissue specific cutting: an experimental study. Lasers Med Sci 19(2):81–88PubMedCrossRef Rupprecht S, Tangermann-Gerk K, Wiltfang J, Neukam FW, Schlegel A (2004) Sensor-based laser ablation for tissue specific cutting: an experimental study. Lasers Med Sci 19(2):81–88PubMedCrossRef
25.
go back to reference Chan A, Rode A, Gamaly E, Luther-Davies B, Taylor B, Dawes J, Lowe M, Hannaford P (2003) Ablation of dental enamel using subpicosecond pulsed lasers. In: International Congress Series, vol 1248. Elsevier, Amsterdam, pp 117–119 Chan A, Rode A, Gamaly E, Luther-Davies B, Taylor B, Dawes J, Lowe M, Hannaford P (2003) Ablation of dental enamel using subpicosecond pulsed lasers. In: International Congress Series, vol 1248. Elsevier, Amsterdam, pp 117–119
26.
go back to reference Rode AV, Gamaly EG, Luther-Davies B, Taylor B, Graessel M, Dawes JM, Chan A, Lowe R, Hannaford P (2003) Precision ablation of dental enamel using a subpicosecond pulsed laser. Aust Dent J 48 (4):233–239PubMedCrossRef Rode AV, Gamaly EG, Luther-Davies B, Taylor B, Graessel M, Dawes JM, Chan A, Lowe R, Hannaford P (2003) Precision ablation of dental enamel using a subpicosecond pulsed laser. Aust Dent J 48 (4):233–239PubMedCrossRef
27.
go back to reference Walsh JT Jr, Deutsch TF (1989) Er:YAG laser ablation of tissue: measurement of ablation rates. Lasers Surg Med 9(4):327–337PubMedCrossRef Walsh JT Jr, Deutsch TF (1989) Er:YAG laser ablation of tissue: measurement of ablation rates. Lasers Surg Med 9(4):327–337PubMedCrossRef
28.
go back to reference Ivanenko M, Werner M, Afilal S, Klasing M, Hering P (2005) Ablation of hard bone tissue with pulsed CO2 lasers. Med Laser Appl 20(1):13–23CrossRef Ivanenko M, Werner M, Afilal S, Klasing M, Hering P (2005) Ablation of hard bone tissue with pulsed CO2 lasers. Med Laser Appl 20(1):13–23CrossRef
29.
go back to reference Kang HW, Lee H, Chen S, Welch AJ (2006) Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface. IEEE J Quantum Elect 42(7):633–642CrossRef Kang HW, Lee H, Chen S, Welch AJ (2006) Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface. IEEE J Quantum Elect 42(7):633–642CrossRef
30.
go back to reference Tulea C, Caron J, Wahab H, Gehlich N, Hoefer M, Esser D, Jungbluth B, Lenenbach A, Noll R (2013) Highly efficient nonthermal ablation of bone under bulk water with a frequency-doubled Nd: YVO4 picosecond laser, in Photonic Therapeutics and Diagnostics IX, vol. 8565. International Society for Optics and Photonics, p. 85656E Tulea C, Caron J, Wahab H, Gehlich N, Hoefer M, Esser D, Jungbluth B, Lenenbach A, Noll R (2013) Highly efficient nonthermal ablation of bone under bulk water with a frequency-doubled Nd: YVO4 picosecond laser, in Photonic Therapeutics and Diagnostics IX, vol. 8565. International Society for Optics and Photonics, p. 85656E
31.
go back to reference Cangueiro LT, da Silva Vilar RMC, do Rego AMB, Muralha VS (2012) Femtosecond laser ablation of bovine cortical bone. J Biomed Opt 17(12):125005PubMedCrossRef Cangueiro LT, da Silva Vilar RMC, do Rego AMB, Muralha VS (2012) Femtosecond laser ablation of bovine cortical bone. J Biomed Opt 17(12):125005PubMedCrossRef
32.
go back to reference Youn J-I, Sweet P, Peavy GM (2007) A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 μm. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 39(4):332–340CrossRef Youn J-I, Sweet P, Peavy GM (2007) A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 μm. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 39(4):332–340CrossRef
33.
go back to reference Sasaki KM, Aoki A, Ichinose S, Ishikawa I (2002) Ultrastructural analysis of bone tissue irradiated by Er:YAG laser. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 31(5):322–332CrossRef Sasaki KM, Aoki A, Ichinose S, Ishikawa I (2002) Ultrastructural analysis of bone tissue irradiated by Er:YAG laser. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 31(5):322–332CrossRef
34.
go back to reference Baek K-w, Deibel W, Marinov D, Griessen M, Dard M, Bruno A, Zeilhofer H-F, Cattin P, Juergens P (2015) A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser. Lasers Surg Med 47(5):426–432PubMedCrossRef Baek K-w, Deibel W, Marinov D, Griessen M, Dard M, Bruno A, Zeilhofer H-F, Cattin P, Juergens P (2015) A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser. Lasers Surg Med 47(5):426–432PubMedCrossRef
35.
go back to reference de Mello EDA, Pagnoncelli RM, Munin E, Sant’Ana Filho M, de Mello GPS, Arisawa EAL, de Oliveira MG (2008) Comparative histological analysis of bone healing of standardized bone defects performed with the Er:YAG laser and steel burs. Lasers Med Sci 23(3):253–260PubMedCrossRef de Mello EDA, Pagnoncelli RM, Munin E, Sant’Ana Filho M, de Mello GPS, Arisawa EAL, de Oliveira MG (2008) Comparative histological analysis of bone healing of standardized bone defects performed with the Er:YAG laser and steel burs. Lasers Med Sci 23(3):253–260PubMedCrossRef
36.
go back to reference Akhbar MFA, Yusoff AR (2019) Comparison of bone temperature elevation in drilling of human, bovine and porcine bone. Procedia CIRP 82:411–414CrossRef Akhbar MFA, Yusoff AR (2019) Comparison of bone temperature elevation in drilling of human, bovine and porcine bone. Procedia CIRP 82:411–414CrossRef
37.
go back to reference Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 27(15):2907–2915PubMedCrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 27(15):2907–2915PubMedCrossRef
38.
go back to reference Lu JZ, Joshi SS, Pantawane MV, Ho Y-H, Wu T-C, Dahotre NB (2019) Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. Mat Sci Eng C 105:110028CrossRef Lu JZ, Joshi SS, Pantawane MV, Ho Y-H, Wu T-C, Dahotre NB (2019) Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy. Mat Sci Eng C 105:110028CrossRef
39.
go back to reference Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425PubMedCrossRef Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425PubMedCrossRef
40.
go back to reference Kokubo T, Takadama H (2007) Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants. Handbook of Biomineralization: Biological Aspects and Structure Formation, pp. 97–109 Kokubo T, Takadama H (2007) Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants. Handbook of Biomineralization: Biological Aspects and Structure Formation, pp. 97–109
41.
go back to reference Paital SR, Cao Z, He W, Dahotre NB (2010) Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured ca-p coating. Biofabrication 2(2):025001PubMedCrossRef Paital SR, Cao Z, He W, Dahotre NB (2010) Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured ca-p coating. Biofabrication 2(2):025001PubMedCrossRef
Metadata
Title
Laser fabrication of structural bone: surface morphology and biomineralization assessment
Authors
Sucharita Banerjee
Mangesh V. Pantawane
Narendra B. Dahotre
Publication date
01-02-2021
Publisher
Springer London
Keyword
Laser
Published in
Lasers in Medical Science / Issue 1/2021
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03023-0

Other articles of this Issue 1/2021

Lasers in Medical Science 1/2021 Go to the issue