Skip to main content
Top
Published in: Lasers in Medical Science 2/2020

01-03-2020 | Review Article

Advances in adaptive optics–based two-photon fluorescence microscopy for brain imaging

Authors: Pranoy Sahu, Nirmal Mazumder

Published in: Lasers in Medical Science | Issue 2/2020

Login to get access

Abstract

Deep tissue imaging using two-photon fluorescence (TPF) techniques have revolutionized the optical imaging community by providing in depth molecular information at the single-cell level. These techniques provide structural and functional aspects of mammalian brain at unprecedented depth and resolution. However, wavefront distortions introduced by the optical system as well as the biological sample (tissue) limit the achievable fluorescence signal-to-noise ratio and resolution with penetration depth. In this review, we discuss on the advances in TPF microscopy techniques for in vivo functional imaging and offer guidelines as to which technologies are best suited for different imaging applications with special reference to adaptive optics.
Literature
1.
go back to reference Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C et al (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321:1686–1689PubMed Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C et al (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321:1686–1689PubMed
2.
go back to reference Miquelajauregui A, Kribakaran S, Mostany R, Badaloni A, Consalez GG, Portera-Cailliau C (2015) Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation. J Neuroscience 35:7287–7294 Miquelajauregui A, Kribakaran S, Mostany R, Badaloni A, Consalez GG, Portera-Cailliau C (2015) Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation. J Neuroscience 35:7287–7294
3.
go back to reference Kim T, Oh WC, Choi JH, Kwon HB (2016) Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo. Proc Natl Acad Sci U S A 113:E1372–E1381PubMedPubMedCentral Kim T, Oh WC, Choi JH, Kwon HB (2016) Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo. Proc Natl Acad Sci U S A 113:E1372–E1381PubMedPubMedCentral
4.
go back to reference Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature 11:749–751 Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature 11:749–751
5.
go back to reference Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMed Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMed
6.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318PubMed Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318PubMed
7.
go back to reference Mertz J (2004) Nonlinear microscopy: new techniques and applications. Cur Opin Neurobiology 14:610–616 Mertz J (2004) Nonlinear microscopy: new techniques and applications. Cur Opin Neurobiology 14:610–616
8.
go back to reference Meng G, Liang Y, Sarsfield S, Jiang WC, Lu R, Dudman JT et al (2019) High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. Elife 8:e40805PubMedPubMedCentral Meng G, Liang Y, Sarsfield S, Jiang WC, Lu R, Dudman JT et al (2019) High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. Elife 8:e40805PubMedPubMedCentral
9.
go back to reference Piazza S, Bianchini P, Sheppard C, Diaspro A, Duocastella M (2018) Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping. J Biophotonics 11:e201700050 Piazza S, Bianchini P, Sheppard C, Diaspro A, Duocastella M (2018) Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping. J Biophotonics 11:e201700050
10.
go back to reference Abdeladim L, Matho KS, Clavreul S, Mahou P, Sintes JM, Solinas X et al (2019) Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun 10:1662PubMedPubMedCentral Abdeladim L, Matho KS, Clavreul S, Mahou P, Sintes JM, Solinas X et al (2019) Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun 10:1662PubMedPubMedCentral
11.
go back to reference Ricard C, Arroyo ED, He CX, Portera-Cailliau C, Lepousez G, Canepari M et al (2018) Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cell. Brain Struct Funct 223:3011–3043PubMedPubMedCentral Ricard C, Arroyo ED, He CX, Portera-Cailliau C, Lepousez G, Canepari M et al (2018) Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cell. Brain Struct Funct 223:3011–3043PubMedPubMedCentral
12.
go back to reference Chen IW, Ronzitti E, Lee BR, Daigle TL, Dalkara D, Zeng H et al (2019) In vivo submillisecond two-photon optogenetics with temporally focused patterned light. J Neurosci 39:3484–3497PubMedPubMedCentral Chen IW, Ronzitti E, Lee BR, Daigle TL, Dalkara D, Zeng H et al (2019) In vivo submillisecond two-photon optogenetics with temporally focused patterned light. J Neurosci 39:3484–3497PubMedPubMedCentral
13.
go back to reference Ahn C, Hwang B, Nam K, Jin H, Woo T, Park JH (2019) Overcoming the penetration depth limit in optical microscopy: Adaptive optics and wavefront shaping. J. Innov. Opt. Health Sci 12:1930002 Ahn C, Hwang B, Nam K, Jin H, Woo T, Park JH (2019) Overcoming the penetration depth limit in optical microscopy: Adaptive optics and wavefront shaping. J. Innov. Opt. Health Sci 12:1930002
14.
go back to reference Rodríguez C, Ji N (2018) Adaptive optical microscopy for neurobiology. Cur Opin Neurobiol 50:83–91 Rodríguez C, Ji N (2018) Adaptive optical microscopy for neurobiology. Cur Opin Neurobiol 50:83–91
15.
go back to reference Park JH, Yu Z, Lee K, Lai P, Park Y (2018) Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications. APL Photonics 3:100901 Park JH, Yu Z, Lee K, Lai P, Park Y (2018) Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications. APL Photonics 3:100901
16.
go back to reference Turcotte R, Liang Y, Ji N (2017) Adaptive optical versus spherical aberration corrections for in vivo brain imaging. Biomed Opt Express 8:3891–3902PubMedPubMedCentral Turcotte R, Liang Y, Ji N (2017) Adaptive optical versus spherical aberration corrections for in vivo brain imaging. Biomed Opt Express 8:3891–3902PubMedPubMedCentral
17.
go back to reference Bueno JM, Skorsetz M, Bonora S, Artal P (2018) Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens. Opt Express 26:14278–14287PubMed Bueno JM, Skorsetz M, Bonora S, Artal P (2018) Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens. Opt Express 26:14278–14287PubMed
18.
go back to reference Galwaduge P, Kim S, Grosberg L, Hillman E (2015) Simple wavefront correction framework for two-photon microscopy of in-vivo brain. Biomed Opt Express 6:2997–3013PubMedPubMedCentral Galwaduge P, Kim S, Grosberg L, Hillman E (2015) Simple wavefront correction framework for two-photon microscopy of in-vivo brain. Biomed Opt Express 6:2997–3013PubMedPubMedCentral
19.
go back to reference Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ (2009) Advances in light microscopy for neuroscience. Ann Rev Neurosci 3:435–506 Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ (2009) Advances in light microscopy for neuroscience. Ann Rev Neurosci 3:435–506
20.
go back to reference Matsumoto N, Inoue T, Matsumoto A, Okazaki S (2015) Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator. Biomed Opt Express 6:2575–2587PubMedPubMedCentral Matsumoto N, Inoue T, Matsumoto A, Okazaki S (2015) Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator. Biomed Opt Express 6:2575–2587PubMedPubMedCentral
21.
go back to reference Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LLO et al (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14:1089–1093PubMed Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LLO et al (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14:1089–1093PubMed
22.
go back to reference Grinvald A, Frostig RD, Siegel RM, Bartfeld E (1991) High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci U S A 88:11559–11563PubMedPubMedCentral Grinvald A, Frostig RD, Siegel RM, Bartfeld E (1991) High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci U S A 88:11559–11563PubMedPubMedCentral
23.
go back to reference Lu L, Gutruf P, Xia L, Bhatti LD, Wang X et al (2018) Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc Natl Acad Sci U S A 115:E1374–E138s3PubMedPubMedCentral Lu L, Gutruf P, Xia L, Bhatti LD, Wang X et al (2018) Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc Natl Acad Sci U S A 115:E1374–E138s3PubMedPubMedCentral
24.
go back to reference Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73PubMed Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73PubMed
25.
go back to reference Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Ann Rev Neurosci 30:79–97PubMed Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Ann Rev Neurosci 30:79–97PubMed
26.
go back to reference Yaseen MA, Sakadžić S, Wu W, Becker W, Kasischke KA, Boas DA (2013) In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed Opt Express 4:307–321PubMedPubMedCentral Yaseen MA, Sakadžić S, Wu W, Becker W, Kasischke KA, Boas DA (2013) In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed Opt Express 4:307–321PubMedPubMedCentral
27.
go back to reference Wang HK, Majewska A, Schummers J, Farley B, Hu C, Sur M, Tonegawa S (2006) In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 126:389–402PubMed Wang HK, Majewska A, Schummers J, Farley B, Hu C, Sur M, Tonegawa S (2006) In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 126:389–402PubMed
28.
go back to reference Birkner A, Tischbirek CH, Konnerth A (2017) Improved deep two-photon calcium imaging in vivo. Cell Calcium 64:29–35PubMed Birkner A, Tischbirek CH, Konnerth A (2017) Improved deep two-photon calcium imaging in vivo. Cell Calcium 64:29–35PubMed
29.
go back to reference Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:11 Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:11
30.
go back to reference Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100:7319–7324PubMedPubMedCentral Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100:7319–7324PubMedPubMedCentral
31.
go back to reference Theer P, Denk W (2006) On the fundamental imaging-depth limit in two-photon microscopy. JOSA A 23:3139–3149PubMed Theer P, Denk W (2006) On the fundamental imaging-depth limit in two-photon microscopy. JOSA A 23:3139–3149PubMed
32.
go back to reference Yang W, Carrillo-Reid L, Bando Y, Peterka DS, Yuste R (2018) Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. Elife 7:e32671PubMedPubMedCentral Yang W, Carrillo-Reid L, Bando Y, Peterka DS, Yuste R (2018) Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. Elife 7:e32671PubMedPubMedCentral
33.
go back to reference Kawakami R., Sawada K., Sato A., Hibi T., Kozawa Y., Sato S., et al. (2013) Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser, Sci Rep, 3. Kawakami R., Sawada K., Sato A., Hibi T., Kozawa Y., Sato S., et al. (2013) Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser, Sci Rep, 3.
34.
go back to reference Yasuda R, Harvey CD, Zhong H, Sobczyk A, Van Aelst L, Svoboda K (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283PubMed Yasuda R, Harvey CD, Zhong H, Sobczyk A, Van Aelst L, Svoboda K (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283PubMed
35.
go back to reference Zong W, Wu R, Li M, Hu Y, Li Y, Li J et al (2017) Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14:713PubMed Zong W, Wu R, Li M, Hu Y, Li Y, Li J et al (2017) Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14:713PubMed
36.
go back to reference Peters AJ, Liu H, Komiyama T (2017) Learning in the rodent motor cortex. Ann Rev Neurosci 40:77–97PubMed Peters AJ, Liu H, Komiyama T (2017) Learning in the rodent motor cortex. Ann Rev Neurosci 40:77–97PubMed
37.
go back to reference Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ et al (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16:264–266PubMedPubMedCentral Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ et al (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16:264–266PubMedPubMedCentral
38.
go back to reference Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238PubMedPubMedCentral Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238PubMedPubMedCentral
39.
go back to reference Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A et al (2014) Natural neural projection dynamics underlying social behaviour. Cell 157:1535–1551PubMedPubMedCentral Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A et al (2014) Natural neural projection dynamics underlying social behaviour. Cell 157:1535–1551PubMedPubMedCentral
40.
go back to reference Resendez SL, Stuber GD (2015) In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behaviour. Neuropsychopharmacology 40:238PubMed Resendez SL, Stuber GD (2015) In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behaviour. Neuropsychopharmacology 40:238PubMed
41.
go back to reference Barretto RP, Ko TH, Jung JC, Wang TJ, Capps G, Waters AC et al (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17:223–228PubMedPubMedCentral Barretto RP, Ko TH, Jung JC, Wang TJ, Capps G, Waters AC et al (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17:223–228PubMedPubMedCentral
42.
go back to reference Delgado E. M., Psaltis D., Moser C. (2016) Two-photon excitation endoscopy through a multimode optical fiber, in: SPIE BiOS, International Society for Optics and Photonics, 97171E–97171E. Delgado E. M., Psaltis D., Moser C. (2016) Two-photon excitation endoscopy through a multimode optical fiber, in: SPIE BiOS, International Society for Optics and Photonics, 97171E–97171E.
43.
go back to reference Bocarsly ME, Jiang WC, Wang C, Dudman JT, Ji N, Aponte Y (2015) Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed Opt Express 6:4546–4556PubMedPubMedCentral Bocarsly ME, Jiang WC, Wang C, Dudman JT, Ji N, Aponte Y (2015) Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed Opt Express 6:4546–4556PubMedPubMedCentral
44.
go back to reference Champelovier D, Teixeira J, Conan JM, Balla N, Mugnier LM, Tressard T et al (2017) Image-based adaptive optics for in vivo imaging in the hippocampus. Sci Rep 7:42924PubMedPubMedCentral Champelovier D, Teixeira J, Conan JM, Balla N, Mugnier LM, Tressard T et al (2017) Image-based adaptive optics for in vivo imaging in the hippocampus. Sci Rep 7:42924PubMedPubMedCentral
45.
go back to reference Forli A, Vecchia D, Binini N, Succol F, Bovetti S, Moretti C et al (2018) Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep 22:3087–3098PubMedPubMedCentral Forli A, Vecchia D, Binini N, Succol F, Bovetti S, Moretti C et al (2018) Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep 22:3087–3098PubMedPubMedCentral
46.
go back to reference Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552PubMedPubMedCentral Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552PubMedPubMedCentral
47.
go back to reference Bednarkiewicz A, Bouhifd M, Whelan MP (2008) Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging. Appl Opt 47:1193–1199PubMed Bednarkiewicz A, Bouhifd M, Whelan MP (2008) Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging. Appl Opt 47:1193–1199PubMed
48.
go back to reference Gustafsson MG, Shao L, Carlton PM, Wang CR, Golubovskaya IN, Cande WZ et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophy J 94:4957–4970 Gustafsson MG, Shao L, Carlton PM, Wang CR, Golubovskaya IN, Cande WZ et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophy J 94:4957–4970
49.
go back to reference Losavio BE, Iyer V, Saggau P (2009) Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices. J Biomed Opt 14:064033–064014PubMedPubMedCentral Losavio BE, Iyer V, Saggau P (2009) Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices. J Biomed Opt 14:064033–064014PubMedPubMedCentral
50.
go back to reference Dal MM, Difato F, Beltramo R, Blau A, Benfenati F, Fellin T (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731 Dal MM, Difato F, Beltramo R, Blau A, Benfenati F, Fellin T (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731
51.
go back to reference Lutz C, Otis TS, DeSars V, Charpak S, DiGregorio DA, Emiliani V (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827PubMedPubMedCentral Lutz C, Otis TS, DeSars V, Charpak S, DiGregorio DA, Emiliani V (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827PubMedPubMedCentral
52.
go back to reference Feeks JA, Hunter JJ (2017) Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. Biomed Opt Express 8:2483–2495PubMedPubMedCentral Feeks JA, Hunter JJ (2017) Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. Biomed Opt Express 8:2483–2495PubMedPubMedCentral
53.
go back to reference Mostany R., Miquelajauregui A., Shtrahman M., Portera-Cailliau C. (2015) Two-photon excitation microscopy and its applications in neuroscience, Advanced fluorescence microscopy: Methods and Protocols, 25-42. Mostany R., Miquelajauregui A., Shtrahman M., Portera-Cailliau C. (2015) Two-photon excitation microscopy and its applications in neuroscience, Advanced fluorescence microscopy: Methods and Protocols, 25-42.
54.
go back to reference Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20:20998–21009PubMedPubMedCentral Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20:20998–21009PubMedPubMedCentral
55.
go back to reference Facomprez A, Beaurepaire E, Débarre D (2012) Accuracy of correction in modal sensorless adaptive optics. Opt Express 20:2598–2612PubMed Facomprez A, Beaurepaire E, Débarre D (2012) Accuracy of correction in modal sensorless adaptive optics. Opt Express 20:2598–2612PubMed
56.
go back to reference Packer MA, Russell EL, Dalgleish WPH, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146PubMed Packer MA, Russell EL, Dalgleish WPH, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146PubMed
57.
go back to reference Nikolenko V., Watson B. O., Araya R., Woodruff A., Peterka D. S., Yuste R. (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators, Front Neural Circuits, 2. Nikolenko V., Watson B. O., Araya R., Woodruff A., Peterka D. S., Yuste R. (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators, Front Neural Circuits, 2.
58.
go back to reference Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME et al (2014) Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods 11:625–628PubMedPubMedCentral Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME et al (2014) Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods 11:625–628PubMedPubMedCentral
59.
go back to reference Tao X, Norton A, Kissel M, Azucena O, Kubby J (2013) Adaptive optical two-photon microscopy using autofluorescent guide stars. Opt Lett 38:5075–5078PubMed Tao X, Norton A, Kissel M, Azucena O, Kubby J (2013) Adaptive optical two-photon microscopy using autofluorescent guide stars. Opt Lett 38:5075–5078PubMed
60.
go back to reference Quirin S, Jackson J, Peterka DS, Yuste R (2014) Simultaneous imaging of neural activity in three dimensions. Front Neural Circuits 8:29PubMedPubMedCentral Quirin S, Jackson J, Peterka DS, Yuste R (2014) Simultaneous imaging of neural activity in three dimensions. Front Neural Circuits 8:29PubMedPubMedCentral
61.
go back to reference Yang W, Miller JE, Carrillo-Reid L, Pnevmatikakis E, Paninski L, Yuste R et al (2016) Simultaneous multi-plane imaging of neural circuits. Neuron 89:269–284PubMedPubMedCentral Yang W, Miller JE, Carrillo-Reid L, Pnevmatikakis E, Paninski L, Yuste R et al (2016) Simultaneous multi-plane imaging of neural circuits. Neuron 89:269–284PubMedPubMedCentral
62.
go back to reference Champelovier D., Teixeira J., Conan J. M., Balla N., Mugnier L., Tressard T., et al (2017) Image-based adaptive optics for in vivo imaging in the hippocampus, Sci Rep, 7. Champelovier D., Teixeira J., Conan J. M., Balla N., Mugnier L., Tressard T., et al (2017) Image-based adaptive optics for in vivo imaging in the hippocampus, Sci Rep, 7.
63.
go back to reference Skorsetz M, Artal P, Bueno JM (2016) Performance evaluation of a sensorless adaptive optics multiphoton microscope. J Microscopy 261:249–258 Skorsetz M, Artal P, Bueno JM (2016) Performance evaluation of a sensorless adaptive optics multiphoton microscope. J Microscopy 261:249–258
64.
go back to reference Marsh P, Marsh D, Girkin J (2003) Practical implementation of adaptive optics in multiphoton microscopy. Opt Express 11:1123–1130PubMed Marsh P, Marsh D, Girkin J (2003) Practical implementation of adaptive optics in multiphoton microscopy. Opt Express 11:1123–1130PubMed
65.
go back to reference Débarre D, Botcherby EJ, Watanabe T, Srinivas S, Booth MJ, Wilson T (2009) Image-based adaptive optics for two-photon microscopy. Opt Lett 34:2495–2497PubMedPubMedCentral Débarre D, Botcherby EJ, Watanabe T, Srinivas S, Booth MJ, Wilson T (2009) Image-based adaptive optics for two-photon microscopy. Opt Lett 34:2495–2497PubMedPubMedCentral
66.
go back to reference Zeng J, Mahou P, Schanne-Klein MC, Beaurepaire E, Débarre D (2012) 3D resolved mapping of optical aberrations in thick tissues. Biomed Opt Express 3(1898-1913):2012 Zeng J, Mahou P, Schanne-Klein MC, Beaurepaire E, Débarre D (2012) 3D resolved mapping of optical aberrations in thick tissues. Biomed Opt Express 3(1898-1913):2012
67.
go back to reference Booth MJ (2014) Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl 3:e165 Booth MJ (2014) Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl 3:e165
68.
go back to reference Cha JW, Ballesta J, So PT (2010) Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J Biomed Optics 15:046022–046010 Cha JW, Ballesta J, So PT (2010) Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J Biomed Optics 15:046022–046010
69.
go back to reference Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci U S A 103:17137–17142PubMedPubMedCentral Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci U S A 103:17137–17142PubMedPubMedCentral
70.
go back to reference Ji N, Sato TR, Betzig E (2012) Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci U S A 109:22–27PubMed Ji N, Sato TR, Betzig E (2012) Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci U S A 109:22–27PubMed
71.
go back to reference Aviles-Espinosa R, Andilla J, Porcar-Guezenec R, Olarte OE, Nieto M, Levecq X et al (2011) Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed Opt Express 2:3135–3149PubMedPubMedCentral Aviles-Espinosa R, Andilla J, Porcar-Guezenec R, Olarte OE, Nieto M, Levecq X et al (2011) Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed Opt Express 2:3135–3149PubMedPubMedCentral
72.
go back to reference Wang K., Sun W., Richie C. T., Harvey B. K., Betzig E., Ji N. (2015) Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue, Nat Commun, 6. Wang K., Sun W., Richie C. T., Harvey B. K., Betzig E., Ji N. (2015) Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue, Nat Commun, 6.
73.
go back to reference Ji N, Milkie DE, Betzig E (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7:141–147PubMed Ji N, Milkie DE, Betzig E (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7:141–147PubMed
74.
go back to reference Park JH, Kong L, Zhou Y, Cui M (2017) Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods 14:581–583PubMedPubMedCentral Park JH, Kong L, Zhou Y, Cui M (2017) Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods 14:581–583PubMedPubMedCentral
75.
go back to reference Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14:374–380PubMed Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14:374–380PubMed
77.
go back to reference Gautam V, Drury J, Choy JM, Stricker C, Bachor HA, Daria VR (2015) Improved two-photon imaging of living neurons in brain tissue through temporal gating. Biomed Opt Express 6:4027–4036PubMedPubMedCentral Gautam V, Drury J, Choy JM, Stricker C, Bachor HA, Daria VR (2015) Improved two-photon imaging of living neurons in brain tissue through temporal gating. Biomed Opt Express 6:4027–4036PubMedPubMedCentral
78.
go back to reference Winter PW, York AG, Dalle ND, Ingaramo M, Christensen R, Chitnis A et al (2014) Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica 1:181–191PubMedPubMedCentral Winter PW, York AG, Dalle ND, Ingaramo M, Christensen R, Chitnis A et al (2014) Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica 1:181–191PubMedPubMedCentral
79.
go back to reference Zheng W, Wu Y, Winter P, Fischer R, Nogare DD, Hong A et al (2017) Adaptive optics improves multiphoton super-resolution imaging. Nat Methods 14:869PubMed Zheng W, Wu Y, Winter P, Fischer R, Nogare DD, Hong A et al (2017) Adaptive optics improves multiphoton super-resolution imaging. Nat Methods 14:869PubMed
80.
go back to reference Bar-Noam AS, Farah N, Shoham S (2016) Correction-free remotely scanned two-photon in vivo mouse retinal imaging. Light Sci Appl 5:e16007PubMedPubMedCentral Bar-Noam AS, Farah N, Shoham S (2016) Correction-free remotely scanned two-photon in vivo mouse retinal imaging. Light Sci Appl 5:e16007PubMedPubMedCentral
Metadata
Title
Advances in adaptive optics–based two-photon fluorescence microscopy for brain imaging
Authors
Pranoy Sahu
Nirmal Mazumder
Publication date
01-03-2020
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 2/2020
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02908-z

Other articles of this Issue 2/2020

Lasers in Medical Science 2/2020 Go to the issue