Skip to main content
Top
Published in: Lasers in Medical Science 6/2019

01-08-2019 | Bone Defect | Original Article

Effect of low-level laser therapy and zoledronic acid on bone repair process

Authors: Vivian Chiacchio Buchignani, Evandro José Germano, Livia Marcela dos Santos, Jessica Lemos Gulinelli, Bella Luna Colombini Ishikiriama, Wilson Aparecido Orcini, Luciana Monti Lima Rivera, Pâmela Leticia Santos

Published in: Lasers in Medical Science | Issue 6/2019

Login to get access

Abstract

This study aimed to evaluate, through histomorphometric analysis, the bone repair process in the tibia of rats treated with zoledronic acid and submitted to 808-nm low-level laser therapy (LLLT) by using arsenide aluminum gallium laser. For this purpose, 20 rats were used and distributed according to treatment: group 1—saline administration; group 2—treated with LLLT; group 3—treated with zoledronic acid; and group 4—treated with zoledronic acid and LLLT. The zoledronic acid was administered at a dose of 0.035 mg/kg every 2 weeks for 8 weeks. Subsequently, bone defects of 2 mm were prepared in the tibias of all groups. The bone defects in groups 2 and 4 were irradiated with LLLT in the immediate post-operative period. After 14 and 28 days of application, the animals were submitted and euthanized for histomorphometric analysis. The results were submitted to statistical analysis (α = 5%), and the intragroup comparison was performed using the t test. On the other hand, for intergroup comparison, the ANOVA test was performed, and to the groups presenting statistically significant difference, the Student-Newman-Keuls test was used. In intergroup comparison, group 1 (mean ± SD= 45.2 ± 18.56%) showed a lower bone formation compared with groups 2 (64.13 ± 3.51%) (p = 0.358) and 4 (15.2 ± 78.22%) (p = 0.049), at the 14-day period. Group 3 (20.99 ± 7.42%) also presented a lower amount of neoformed bone tissue, with statistically significant difference when compared with groups 1 (p = 0.002), 2, and 4 (p ≤ 0,001). After 28 days, group 1 presented a lower amount of neoformed bone tissue compared with the other groups, with p = 0.020. Thus, it was concluded that LLLT associated with zoledronic acid is effective for stimulating bone formation in surgically created defects in rats, at the periods studied.
Literature
1.
go back to reference Cheng A, Daly CG, Logan RM, Stein B, Goss AN (2009) Alveolar bone and the bisphosphonates. Aust Dent J 54:S51–S61CrossRefPubMed Cheng A, Daly CG, Logan RM, Stein B, Goss AN (2009) Alveolar bone and the bisphosphonates. Aust Dent J 54:S51–S61CrossRefPubMed
2.
go back to reference Yamashita J, Koi K, Yang DY, McCauley LK (2011) Effect of zoledronate on oral wound healing in rats. Clin Cancer Res 17:1405–1414CrossRef Yamashita J, Koi K, Yang DY, McCauley LK (2011) Effect of zoledronate on oral wound healing in rats. Clin Cancer Res 17:1405–1414CrossRef
3.
go back to reference Borromeo GL, Tsao CE, Darby IB, Ebeling PR (2011) A review of the clinical implications of bisphosphonates in dentistry. Aust Dent J 56:2–9CrossRefPubMed Borromeo GL, Tsao CE, Darby IB, Ebeling PR (2011) A review of the clinical implications of bisphosphonates in dentistry. Aust Dent J 56:2–9CrossRefPubMed
4.
go back to reference Palacio EP, Müller SS, Sardenberg T, Mizobuchi RR, Galbiatti JA, Durigan A Jr, Savarese A, Ortolan EV (2012) Detecting early biomechanical effects of zoledronic acid on femurs of osteoporotic female rats. J Osteoporos 2012:162802CrossRef Palacio EP, Müller SS, Sardenberg T, Mizobuchi RR, Galbiatti JA, Durigan A Jr, Savarese A, Ortolan EV (2012) Detecting early biomechanical effects of zoledronic acid on femurs of osteoporotic female rats. J Osteoporos 2012:162802CrossRef
5.
go back to reference Cardemil C, Omar OM, Norlindh B, Wexell CL, Thomsen P (2013) The effects of a systemic single dose of zoledronic acid on post-implantation bone remodelling and inflammation in an ovariectomised rat model. Biomaterials 34:1546–1561CrossRefPubMed Cardemil C, Omar OM, Norlindh B, Wexell CL, Thomsen P (2013) The effects of a systemic single dose of zoledronic acid on post-implantation bone remodelling and inflammation in an ovariectomised rat model. Biomaterials 34:1546–1561CrossRefPubMed
6.
go back to reference Garcia VG, Conceição JM, Fernandes LA, Almeida JM, Nagata MJH, Bosco AF, Theodoro LH (2013) Effects of LLLT in combination with bisphosphonate on bone healing in critical size defects: a histological and histometric study in rat calvaria. Lasers Med Sci 28:407–414CrossRefPubMed Garcia VG, Conceição JM, Fernandes LA, Almeida JM, Nagata MJH, Bosco AF, Theodoro LH (2013) Effects of LLLT in combination with bisphosphonate on bone healing in critical size defects: a histological and histometric study in rat calvaria. Lasers Med Sci 28:407–414CrossRefPubMed
7.
go back to reference Wynn RL (2005) Bisphosphonates, hypercalcemia of malignancy, and osteonecrosis of the jaw. Gen Dent 53:392–395PubMed Wynn RL (2005) Bisphosphonates, hypercalcemia of malignancy, and osteonecrosis of the jaw. Gen Dent 53:392–395PubMed
8.
go back to reference Ebrahimi T, Moslemi N, Rokn AR, Heidari M, Nokhbatolfoghahaie H, Fekrazad R (2012) The influence of low-intensity laser therapy on bone healing. J Dent 9:238–248 Ebrahimi T, Moslemi N, Rokn AR, Heidari M, Nokhbatolfoghahaie H, Fekrazad R (2012) The influence of low-intensity laser therapy on bone healing. J Dent 9:238–248
9.
go back to reference Jakse N, Payer M, Tangl S, Berghold A, Kirmeier R, Lorenzoni M (2007) Influence of low- level laser treatment on bone regeneration and osseointegration of dental implants following sinus augmentation. An experimental study on sheep. Clin Oral Implants Res 18:517–524CrossRefPubMed Jakse N, Payer M, Tangl S, Berghold A, Kirmeier R, Lorenzoni M (2007) Influence of low- level laser treatment on bone regeneration and osseointegration of dental implants following sinus augmentation. An experimental study on sheep. Clin Oral Implants Res 18:517–524CrossRefPubMed
10.
go back to reference Nascimento SB, Cardoso CA, Ribeiro TP, Almeida JD, Albertini R, Munin E, Arissawa EA (2010) Effect of low level laser therapy and calcitonin on bone repair in castiated rats: a densitometric study. Photomed Laser Surg 28:45–49CrossRefPubMed Nascimento SB, Cardoso CA, Ribeiro TP, Almeida JD, Albertini R, Munin E, Arissawa EA (2010) Effect of low level laser therapy and calcitonin on bone repair in castiated rats: a densitometric study. Photomed Laser Surg 28:45–49CrossRefPubMed
11.
go back to reference Hokugo A, Christensen R, Chung EM, Sung EC, Felsenfeld AL, Sayre JW, Garrett N, Adams JS, Nishimura I (2010) Increased prevalence of bisphosphonate-related osteonecrosis of the jaw with vitamin D deficiency in rats. J Bone Miner Res 25:1337–1349CrossRefPubMedPubMedCentral Hokugo A, Christensen R, Chung EM, Sung EC, Felsenfeld AL, Sayre JW, Garrett N, Adams JS, Nishimura I (2010) Increased prevalence of bisphosphonate-related osteonecrosis of the jaw with vitamin D deficiency in rats. J Bone Miner Res 25:1337–1349CrossRefPubMedPubMedCentral
12.
go back to reference Yu YY, Lieu S, Hu D, Miclau T, Colnot C (2012) Site specific effects of zoledronic acid during tibial and mandibular fracture repair. PLoS One 7:e31771–e31780CrossRefPubMedPubMedCentral Yu YY, Lieu S, Hu D, Miclau T, Colnot C (2012) Site specific effects of zoledronic acid during tibial and mandibular fracture repair. PLoS One 7:e31771–e31780CrossRefPubMedPubMedCentral
13.
go back to reference Botell M (2001) Osteoporosis en la menopausia, prevención y estratégias terapêuticas atuales. Rev Cuba Obstet Ginecol 27:199–204 Botell M (2001) Osteoporosis en la menopausia, prevención y estratégias terapêuticas atuales. Rev Cuba Obstet Ginecol 27:199–204
14.
go back to reference Amanat N, McDonald M, Godfrey C, Bilston L, Little D (2007) Optimal timing of a single dose of zoledronic acid to increase strength in rat fracture repair. J Bone Miner Res 22:867–876CrossRefPubMed Amanat N, McDonald M, Godfrey C, Bilston L, Little D (2007) Optimal timing of a single dose of zoledronic acid to increase strength in rat fracture repair. J Bone Miner Res 22:867–876CrossRefPubMed
15.
go back to reference Camacho AF, López JP, Vicente HA (2013) Short-term effect of zoledronic acid upon fracture resistance of the mandibular condyle and femoral head in an animal model. Med Oral Patol Oral Cir Bucal 18:e421–e426CrossRef Camacho AF, López JP, Vicente HA (2013) Short-term effect of zoledronic acid upon fracture resistance of the mandibular condyle and femoral head in an animal model. Med Oral Patol Oral Cir Bucal 18:e421–e426CrossRef
16.
go back to reference Back DA, Pauly S, Rommel L, Hass NP, Schmidmaier G, Wildemann B, Greiner SH (2012) Effect of local zoledronate on implant osseointegration in a rat model. BMC Musculoskelet Disord 13:42–50CrossRefPubMedPubMedCentral Back DA, Pauly S, Rommel L, Hass NP, Schmidmaier G, Wildemann B, Greiner SH (2012) Effect of local zoledronate on implant osseointegration in a rat model. BMC Musculoskelet Disord 13:42–50CrossRefPubMedPubMedCentral
17.
go back to reference Yaman F, Agaçayak S, Atilgan S, Benliday E, Ucan MC, Erol B, Kaya B, Gunay A, Guven S (2012) Effects of systemic zoledronic acid administration on osseointegration of hydroxyapatite-coated and resorbable blast material surface implants in rabbit models. Int J Oral Maxillofac Implants 27:1443–1447PubMed Yaman F, Agaçayak S, Atilgan S, Benliday E, Ucan MC, Erol B, Kaya B, Gunay A, Guven S (2012) Effects of systemic zoledronic acid administration on osseointegration of hydroxyapatite-coated and resorbable blast material surface implants in rabbit models. Int J Oral Maxillofac Implants 27:1443–1447PubMed
18.
go back to reference Okamoto Y, Hirota M, Monden Y, Murata S, Koyama C, Mitsudo K, Iwai T, Ishikawa Y, Tohnai I (2013) High-dose zoledronic acid narrows the periodontal space in rats. Int J Oral Maxillofac Surg 42:627–631CrossRefPubMed Okamoto Y, Hirota M, Monden Y, Murata S, Koyama C, Mitsudo K, Iwai T, Ishikawa Y, Tohnai I (2013) High-dose zoledronic acid narrows the periodontal space in rats. Int J Oral Maxillofac Surg 42:627–631CrossRefPubMed
19.
go back to reference Çankaya M, Senel ÇF, Duman KM, Muci E, Dayisoylu EH, Balaban F (2013) The effects of chronic zoledronate usage on the jaw and long bones evaluated using RANKL and osteoprotegerin levels in an animal model. Int J Oral Maxillofac Surg 42:1134–1139CrossRefPubMed Çankaya M, Senel ÇF, Duman KM, Muci E, Dayisoylu EH, Balaban F (2013) The effects of chronic zoledronate usage on the jaw and long bones evaluated using RANKL and osteoprotegerin levels in an animal model. Int J Oral Maxillofac Surg 42:1134–1139CrossRefPubMed
20.
go back to reference Ribeiro DA, Matsumoto MA (2009) Low-level laser therapy improves bone repair in rats treated with anti-inflammatory drugs. J Oral Rehabil 35:925–933CrossRef Ribeiro DA, Matsumoto MA (2009) Low-level laser therapy improves bone repair in rats treated with anti-inflammatory drugs. J Oral Rehabil 35:925–933CrossRef
21.
go back to reference Matsumoto MA, Ferino RV, Monteleone GF, Ribeiro DA (2009) Low-level laser therapy modulates cycloxygenase-2 expression during bone repair in rats. Laser Med Sci 24:195–201CrossRef Matsumoto MA, Ferino RV, Monteleone GF, Ribeiro DA (2009) Low-level laser therapy modulates cycloxygenase-2 expression during bone repair in rats. Laser Med Sci 24:195–201CrossRef
22.
go back to reference Fáravo-Pípi E, Ribeiro DA, Ribeiro JU, Bossini P, Oliveira P, Parizotto NA, Tim C, Araújo HSSA, Renno ACM (2011) Low-level laser therapy induces differential expression of osteogenic genes during bone repair in rats. Photomed Laser Surg 29:311–317CrossRef Fáravo-Pípi E, Ribeiro DA, Ribeiro JU, Bossini P, Oliveira P, Parizotto NA, Tim C, Araújo HSSA, Renno ACM (2011) Low-level laser therapy induces differential expression of osteogenic genes during bone repair in rats. Photomed Laser Surg 29:311–317CrossRef
23.
go back to reference Fernandes KR, Ribeiro DA, Rodrigues NC, Tim C, Santos AA, Parizotto NA, Araujo HS, Driusso P, Rennó ACM (2013) Effects of low-level laser therapy on the expression. Of osteogenic genes related in the initial stages of bone defects in rats. J Biomed Opt 18:038002CrossRefPubMed Fernandes KR, Ribeiro DA, Rodrigues NC, Tim C, Santos AA, Parizotto NA, Araujo HS, Driusso P, Rennó ACM (2013) Effects of low-level laser therapy on the expression. Of osteogenic genes related in the initial stages of bone defects in rats. J Biomed Opt 18:038002CrossRefPubMed
24.
go back to reference Barbosa D, Villaverde AGJB, Arisawa EAL, Souza RA (2014) Laser therapy in bone repair in rats: analysis of bone optical density. Acta Ortop Bras 22:71–74CrossRefPubMedPubMedCentral Barbosa D, Villaverde AGJB, Arisawa EAL, Souza RA (2014) Laser therapy in bone repair in rats: analysis of bone optical density. Acta Ortop Bras 22:71–74CrossRefPubMedPubMedCentral
25.
go back to reference Marques L, Holgado LA, Francischone LA, Ximenez JPB, Okamoto R, Kinoshita (2015) A new LLLT protocol to speed up the bone healing process—histometric and immunohistochemical analysis in rat calvarial bone defect. Lasers Med Sci 30:1225–1230CrossRefPubMed Marques L, Holgado LA, Francischone LA, Ximenez JPB, Okamoto R, Kinoshita (2015) A new LLLT protocol to speed up the bone healing process—histometric and immunohistochemical analysis in rat calvarial bone defect. Lasers Med Sci 30:1225–1230CrossRefPubMed
26.
go back to reference Sener I, Bereket C, Kosker H, Turer A, Tek M, Kaplan S (2013) The effects of zoledronic acid on mandibular fracture healing in an osteoporotic model: a stereological study. J Craniofac Surg 24:1221Y1224CrossRef Sener I, Bereket C, Kosker H, Turer A, Tek M, Kaplan S (2013) The effects of zoledronic acid on mandibular fracture healing in an osteoporotic model: a stereological study. J Craniofac Surg 24:1221Y1224CrossRef
27.
go back to reference Hikita H, Miyazawa K, Tabuchi M, Kimura M, Goto S (2009) Bisphosphonate administration prior to tooth extraction delays initial healing of the extraction socket in rats. J Bone Miner Metab 27:663–672CrossRef Hikita H, Miyazawa K, Tabuchi M, Kimura M, Goto S (2009) Bisphosphonate administration prior to tooth extraction delays initial healing of the extraction socket in rats. J Bone Miner Metab 27:663–672CrossRef
28.
go back to reference Aguirre JI, Altman MK, Vanegas SM, Franz SE, Bassit AC, Wronski TJ (2010) Effects of alendronate on bone healing after tooth extraction in rats. Oral Dis 16:674–685CrossRef Aguirre JI, Altman MK, Vanegas SM, Franz SE, Bassit AC, Wronski TJ (2010) Effects of alendronate on bone healing after tooth extraction in rats. Oral Dis 16:674–685CrossRef
29.
go back to reference Kobayashi Y, Hiraga T, Ueda A, Wang L, Matsumoto-Nakano M, Hata K, Yatani H, Yoneda T (2010) Zoledronic acid delays wound healing of the tooth extraction socket, inhibits oral epithelial cell migration, and promotes proliferation and adhesion to hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in mice. J Bone Miner Metab 28:165–175CrossRefPubMed Kobayashi Y, Hiraga T, Ueda A, Wang L, Matsumoto-Nakano M, Hata K, Yatani H, Yoneda T (2010) Zoledronic acid delays wound healing of the tooth extraction socket, inhibits oral epithelial cell migration, and promotes proliferation and adhesion to hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in mice. J Bone Miner Metab 28:165–175CrossRefPubMed
Metadata
Title
Effect of low-level laser therapy and zoledronic acid on bone repair process
Authors
Vivian Chiacchio Buchignani
Evandro José Germano
Livia Marcela dos Santos
Jessica Lemos Gulinelli
Bella Luna Colombini Ishikiriama
Wilson Aparecido Orcini
Luciana Monti Lima Rivera
Pâmela Leticia Santos
Publication date
01-08-2019
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 6/2019
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02810-8

Other articles of this Issue 6/2019

Lasers in Medical Science 6/2019 Go to the issue