Skip to main content
Top
Published in: Lasers in Medical Science 3/2019

01-04-2019 | Original Article

Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation

Authors: Luana C. Pires, Fernando P. S. Guastaldi, Andressa V. B. Nogueira, Nilson T. C. Oliveira, Antonio C. Guastaldi, Joni A. Cirelli

Published in: Lasers in Medical Science | Issue 3/2019

Login to get access

Abstract

Perform a physicochemical and morphological characterization of a Ti-15Mo alloy surface modified by laser beam irradiation and to evaluate in vitro the morphological response and proliferation of osteoblastic cells seeded onto this alloy. Disks were made of two different metals, Ti-15Mo alloy and cpTi, used as control. A total of four groups were evaluated: polished cpTi (cpTi-pol), laser-irradiated cpTi (cpTi-L), polished Ti-15Mo alloy (Ti-15Mo-pol), and laser-irradiated Ti-15Mo alloy (Ti-15Mo-L). Before and after laser irradiation of the surfaces, physicochemical and morphological analyses were performed: scanning electron microscopy (FEG-SEM), energy-dispersive spectroscopy (EDX), and X-ray diffraction (XRD). The wettability of the samples was evaluated by contact angle measurement. Murine preosteoblastic cells MC3T3-E1 were cultured onto the experimental disks for cell proliferation, morphology, and spreading analyses. Laser groups presented irregular-shaped cavities on its surface and a typical microstructured surface with large depressions (FEG-SEM). The contact angle for both laser groups was 0°, whereas for the polished groups was ≈ 77 and ≈ 78 for cpTi-pol and Ti-15Mo-pol, respectively. Cell proliferation analysis demonstrated a higher metabolic activity in the laser groups (p < 0.05). From the fluorescence microscopy, Ti-15Mo-L surface seems to induce greater cellular differentiation compared to the cpTi-L surface. The preliminary biological in vitro analyses suggested possible advantages of laser surface treatment in the Ti-15Mo alloy regarding cell proliferation and maturation.
Literature
1.
go back to reference Insua A, Monje A, Wang HL, Miron RJ (2017) Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A Insua A, Monje A, Wang HL, Miron RJ (2017) Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A
2.
go back to reference Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20(Suppl 4):172–184CrossRefPubMed Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20(Suppl 4):172–184CrossRefPubMed
3.
go back to reference Oliveira NTC, Aleixo G, Caram R, Guastaldi AC (2007) Development of Ti-Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mat Sci Eng A 452-453:727–731CrossRef Oliveira NTC, Aleixo G, Caram R, Guastaldi AC (2007) Development of Ti-Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mat Sci Eng A 452-453:727–731CrossRef
4.
go back to reference Oliveira NTC, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater 5(1):399–405CrossRefPubMed Oliveira NTC, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater 5(1):399–405CrossRefPubMed
5.
go back to reference Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903CrossRefPubMed Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903CrossRefPubMed
6.
go back to reference Rivera-Denizard O, Diffoot-Carlo N, Navas V, Sundaram PA (2008) Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. J Mater Sci Mater Med 19(1):153–158CrossRefPubMed Rivera-Denizard O, Diffoot-Carlo N, Navas V, Sundaram PA (2008) Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. J Mater Sci Mater Med 19(1):153–158CrossRefPubMed
7.
go back to reference Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 6(315):1–7CrossRef Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 6(315):1–7CrossRef
8.
go back to reference Kumar S, Narayanan TS (2008) Corrosion behaviour of Ti-15Mo alloy for dental implant applications. J Dent 36(7):500–507CrossRefPubMed Kumar S, Narayanan TS (2008) Corrosion behaviour of Ti-15Mo alloy for dental implant applications. J Dent 36(7):500–507CrossRefPubMed
9.
go back to reference Oliveira NT, Guastaldi FP, Perrotti V, Hochuli-Vieira E, Guastaldi AC, Piattelli A, Iezzi G (2013) Biomedical Ti-Mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits. Clin Implant Dent Relat Res 15(3):427–437CrossRefPubMed Oliveira NT, Guastaldi FP, Perrotti V, Hochuli-Vieira E, Guastaldi AC, Piattelli A, Iezzi G (2013) Biomedical Ti-Mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits. Clin Implant Dent Relat Res 15(3):427–437CrossRefPubMed
10.
go back to reference Bello SA, de Jesus-Maldonado I, Rosim-Fachini E, Sundaram PA, Diffoot-Carlo N (2010) In vitro evaluation of human osteoblast adhesion to a thermally oxidized gamma-TiAl intermetallic alloy of composition Ti-48Al-2Cr-2Nb (at.%). J Mater Sci Mater Med 21(5):1739–1750CrossRefPubMedPubMedCentral Bello SA, de Jesus-Maldonado I, Rosim-Fachini E, Sundaram PA, Diffoot-Carlo N (2010) In vitro evaluation of human osteoblast adhesion to a thermally oxidized gamma-TiAl intermetallic alloy of composition Ti-48Al-2Cr-2Nb (at.%). J Mater Sci Mater Med 21(5):1739–1750CrossRefPubMedPubMedCentral
11.
go back to reference Minagar S, Wang J, Berndt CC, Ivanova EP, Wen C (2013) Cell response of anodized nanotubes on titanium and titanium alloys. J Biomed Mater Res A 101((9):2726–2739CrossRef Minagar S, Wang J, Berndt CC, Ivanova EP, Wen C (2013) Cell response of anodized nanotubes on titanium and titanium alloys. J Biomed Mater Res A 101((9):2726–2739CrossRef
12.
go back to reference Oliveira NTC, Guastaldi AC (2008) Electrochemical behavior of Ti-Mo alloys applied as biomaterial. Corrosion Sci 50(4):938–945CrossRef Oliveira NTC, Guastaldi AC (2008) Electrochemical behavior of Ti-Mo alloys applied as biomaterial. Corrosion Sci 50(4):938–945CrossRef
13.
go back to reference Guastaldi FP, Yoo D, Marin C, Jimbo R, Tovar N, Zanetta-Barbosa D, Coelho PG (2013) Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomater 2013:354125CrossRefPubMedPubMedCentral Guastaldi FP, Yoo D, Marin C, Jimbo R, Tovar N, Zanetta-Barbosa D, Coelho PG (2013) Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomater 2013:354125CrossRefPubMedPubMedCentral
14.
go back to reference Queiroz TP, Souza FA, Guastaldi AC, Margonar R, Garcia-Júnior IR, Hochuli-Vieira E (2013) Commercially pure titanium implants with surfaces modified by laser beam with and without chemical deposition of apatite. Biomechanical and topographical analysis in rabbits. Clin Oral Implants Res 24(8):896–903CrossRefPubMed Queiroz TP, Souza FA, Guastaldi AC, Margonar R, Garcia-Júnior IR, Hochuli-Vieira E (2013) Commercially pure titanium implants with surfaces modified by laser beam with and without chemical deposition of apatite. Biomechanical and topographical analysis in rabbits. Clin Oral Implants Res 24(8):896–903CrossRefPubMed
15.
go back to reference Souza FA, Queiroz TP, Guastaldi AC, Garcia-Júnior IR, Magro-Filho O, Nishioka RS, Sisti KE, Sonoda CK (2013) Comparative in vivo study of commercially pure Ti implants with surfaces modified by laser with and without silicate deposition: biomechanical and scanning electron microscopy analysis. J Biomed Mater Res B Appl Biomater 101(1):76–84CrossRefPubMed Souza FA, Queiroz TP, Guastaldi AC, Garcia-Júnior IR, Magro-Filho O, Nishioka RS, Sisti KE, Sonoda CK (2013) Comparative in vivo study of commercially pure Ti implants with surfaces modified by laser with and without silicate deposition: biomechanical and scanning electron microscopy analysis. J Biomed Mater Res B Appl Biomater 101(1):76–84CrossRefPubMed
16.
go back to reference Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A (2008) The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Int J Oral Maxillofac Implants 23(4):641–647PubMed Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A (2008) The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Int J Oral Maxillofac Implants 23(4):641–647PubMed
17.
go back to reference Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25(1):63–74PubMed Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25(1):63–74PubMed
18.
go back to reference Conserva E, Lanuti A, Menini M (2010) Cell behavior related to implant surfaces with different microstructure and chemical composition: an in vitro analysis. Int J Oral Maxillofac Implants 25(6):1099–1107PubMed Conserva E, Lanuti A, Menini M (2010) Cell behavior related to implant surfaces with different microstructure and chemical composition: an in vitro analysis. Int J Oral Maxillofac Implants 25(6):1099–1107PubMed
19.
go back to reference Braga FJC, Marques RFC, Almeida Filho E, Guastaldi AC (2007) Surface modification of Ti dental implants by Nd:YVO4 laser irradiation. Appl Surf Sci 253(23):9203–9208CrossRef Braga FJC, Marques RFC, Almeida Filho E, Guastaldi AC (2007) Surface modification of Ti dental implants by Nd:YVO4 laser irradiation. Appl Surf Sci 253(23):9203–9208CrossRef
20.
go back to reference Bini RA, Santos ML, Filho EA, Marques RFC, Guastaldi AC (2009) Apatite coatings onto titanium surfaces submitted to laser ablation with different energy densities. Surf Coat Tech 204(4):399–403CrossRef Bini RA, Santos ML, Filho EA, Marques RFC, Guastaldi AC (2009) Apatite coatings onto titanium surfaces submitted to laser ablation with different energy densities. Surf Coat Tech 204(4):399–403CrossRef
21.
go back to reference Filho EA, Fraga AF, Bini RA, Guastaldi AC (2011) Bioactive coating on titanium implants modified by Nd:YVO4 laser. Appl Surf Sci 257(10):4575–4580CrossRef Filho EA, Fraga AF, Bini RA, Guastaldi AC (2011) Bioactive coating on titanium implants modified by Nd:YVO4 laser. Appl Surf Sci 257(10):4575–4580CrossRef
22.
go back to reference Tavangar A, Tan B, Venkatakrishnan K (2011) Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation. Acta Biomater 7(6):2726–2732CrossRefPubMed Tavangar A, Tan B, Venkatakrishnan K (2011) Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation. Acta Biomater 7(6):2726–2732CrossRefPubMed
23.
go back to reference Heinrich A, Dengler K, Koerner T, Haczek C, Deppe H, Stritzker B (2008) Laser-modified titanium implants for improved cell adhesion. Lasers Med Sci 23(1):55–58CrossRefPubMed Heinrich A, Dengler K, Koerner T, Haczek C, Deppe H, Stritzker B (2008) Laser-modified titanium implants for improved cell adhesion. Lasers Med Sci 23(1):55–58CrossRefPubMed
24.
go back to reference Györgyey Á, Ungvári K, Kecskeméti G, Kopniczky J, Hopp B, Oszkó A, Pelsöczi I, Rakonczay Z, Nagy K, Turzó K (2013) Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater Sci Eng C Mater Biol Appl 33(7):4251–4259CrossRefPubMed Györgyey Á, Ungvári K, Kecskeméti G, Kopniczky J, Hopp B, Oszkó A, Pelsöczi I, Rakonczay Z, Nagy K, Turzó K (2013) Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater Sci Eng C Mater Biol Appl 33(7):4251–4259CrossRefPubMed
25.
go back to reference ASTM - American Society for Testing Materials (2008) ASTM F2066-08, standard specification for wrought titanium-15 molybdenum alloy for surgical implant applications (UNS R58150). ASTM International, West Conshohocken ASTM - American Society for Testing Materials (2008) ASTM F2066-08, standard specification for wrought titanium-15 molybdenum alloy for surgical implant applications (UNS R58150). ASTM International, West Conshohocken
26.
go back to reference Wu S, Liu X, Yeung KWK, Guo H, Li P, Hu T, Chung CY, Chu PK (2013) Surface nanoarchitectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf Coat Tech 233(25):13–26CrossRef Wu S, Liu X, Yeung KWK, Guo H, Li P, Hu T, Chung CY, Chu PK (2013) Surface nanoarchitectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf Coat Tech 233(25):13–26CrossRef
27.
go back to reference Sawase T, Jimbo R, Baba K, Shibata Y, Ikeda T, Atsuta M (2008) Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clin Oral Implants Res 19(5):491–496CrossRefPubMed Sawase T, Jimbo R, Baba K, Shibata Y, Ikeda T, Atsuta M (2008) Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clin Oral Implants Res 19(5):491–496CrossRefPubMed
28.
go back to reference Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10(7):2907–2918CrossRefPubMedPubMedCentral Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10(7):2907–2918CrossRefPubMedPubMedCentral
29.
go back to reference Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S (2014) Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res 25(9):1041–1050CrossRefPubMed Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S (2014) Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res 25(9):1041–1050CrossRefPubMed
30.
go back to reference Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, Schedle A, Broggini N, Bornstein MM, Buser D, Ferguson SJ, Becker J, Boyan BD, Cochran DL (2009) Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater 88((2):544–557CrossRef Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, Schedle A, Broggini N, Bornstein MM, Buser D, Ferguson SJ, Becker J, Boyan BD, Cochran DL (2009) Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater 88((2):544–557CrossRef
31.
go back to reference Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J (2014) A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater 10(7):2894–2906CrossRefPubMedPubMedCentral Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J (2014) A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater 10(7):2894–2906CrossRefPubMedPubMedCentral
32.
go back to reference Padial-Molina M, Galindo-Moreno P, Fernández-Barbero JE, O’Valle F, Jódar-Reyes AB, Ortega-Vinuesa JL, Ramón-Torregrosa PJ (2011) Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces. Acta Biomater 7(2):771–778CrossRefPubMed Padial-Molina M, Galindo-Moreno P, Fernández-Barbero JE, O’Valle F, Jódar-Reyes AB, Ortega-Vinuesa JL, Ramón-Torregrosa PJ (2011) Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces. Acta Biomater 7(2):771–778CrossRefPubMed
33.
go back to reference Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD, Tannenbaum R, Schwartz Z (2012) The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials 33(30):7386–7393CrossRefPubMedPubMedCentral Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD, Tannenbaum R, Schwartz Z (2012) The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials 33(30):7386–7393CrossRefPubMedPubMedCentral
34.
go back to reference Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF (2007) The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28(36):5418–5425CrossRefPubMed Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF (2007) The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28(36):5418–5425CrossRefPubMed
Metadata
Title
Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation
Authors
Luana C. Pires
Fernando P. S. Guastaldi
Andressa V. B. Nogueira
Nilson T. C. Oliveira
Antonio C. Guastaldi
Joni A. Cirelli
Publication date
01-04-2019
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 3/2019
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2626-2

Other articles of this Issue 3/2019

Lasers in Medical Science 3/2019 Go to the issue