Skip to main content
Top
Published in: Lasers in Medical Science 4/2017

01-05-2017 | Original Article

Virulence factors of fluconazole-susceptible and fluconazole-resistant Candida albicans after antimicrobial photodynamic therapy

Authors: Fernanda Alves, Ewerton Garcia de Oliveira Mima, Renata Caroline Polato Passador, Vanderlei Salvador Bagnato, Janaína Habib Jorge, Ana Cláudia Pavarina

Published in: Lasers in Medical Science | Issue 4/2017

Login to get access

Abstract

This study evaluated the effects of antimicrobial photodynamic therapy (aPDT) mediated by Photodithazine® (PDZ) and LED light on the virulence factors of fluconazole-susceptible (CaS) and fluconazole-resistant (CaR) Candida albicans. Standardized suspensions of strains were prepared (107), and after 48 h of biofilm formation, these strains were incubated with PDZ (100 mg/L) for 20 min and exposed to LED light (660 nm, 37.5 J/cm2). Additional samples were treated with PDZ or light only, and the control consisted of biofilms that received no treatment. After aPDT, the cells were recovered and the virulence factors were evaluated. To analyze the capacity of adhesion, cells were recovered after aPDT and submitted to the adhesion process in the bottom of a 96-well plate. After this, metabolic activity tests (XTT assay) and cell viability (colony forming units per milliliter, CFU/mL) were applied. To evaluate the biofilm-forming ability after aPDT, the cells recovered were submitted to biofilm formation procedures, and the biofilm formed was evaluated by XTT, CFU/mL, and total biomass (crystal violet) tests. Lastly, the capacity for synthesizing protease and phospholipase enzymes after aPDT was evaluated by fluorimetric tests. Data were analyzed by two- or three-way ANOVA tests (p ≤ 0.05). It was verified that aPDT reduced the viability of both strains, fluconazole-susceptible and fluconazole-resistant C. albicans. It was also observed that the CaR strain had lower susceptibility to the aPDT when compared with the CaS strain. However, regarding the virulence factors evaluated, it was demonstrated that aPDT did not alter the adherence and biofilm formation ability and enzymatic production.
Literature
1.
go back to reference Eggimann P, Garbino J, Pittet D (2003) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3:685–702CrossRefPubMed Eggimann P, Garbino J, Pittet D (2003) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3:685–702CrossRefPubMed
3.
go back to reference Perezous LF, Flaitz CM, Goldschmidt ME, Engelmeier RL (2005) Colonization of Candida species in denture wearers with emphasis on HIV infection: a literature review. J Prosthet Dent 93:288–293CrossRefPubMed Perezous LF, Flaitz CM, Goldschmidt ME, Engelmeier RL (2005) Colonization of Candida species in denture wearers with emphasis on HIV infection: a literature review. J Prosthet Dent 93:288–293CrossRefPubMed
6.
go back to reference Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147:1997–2005CrossRefPubMed Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147:1997–2005CrossRefPubMed
8.
go back to reference Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24. doi:10.1099/jmm.0.045054-0 CrossRefPubMed Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24. doi:10.​1099/​jmm.​0.​045054-0 CrossRefPubMed
9.
go back to reference Hunter KD, Gibson J, Lockhart P, Pithie A, Bagg J (1998) Fluconazole-resistant Candida species in the oral flora of fluconazole-exposed HIV-positive patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:558–564CrossRefPubMed Hunter KD, Gibson J, Lockhart P, Pithie A, Bagg J (1998) Fluconazole-resistant Candida species in the oral flora of fluconazole-exposed HIV-positive patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:558–564CrossRefPubMed
10.
go back to reference White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedPubMedCentral White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedPubMedCentral
11.
go back to reference Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394CrossRefPubMedPubMedCentral Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394CrossRefPubMedPubMedCentral
12.
go back to reference Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of Candida species to photodynamic effects of Photofrin. Antimicrob Agents Chemother 48:2000–2006CrossRefPubMedPubMedCentral Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of Candida species to photodynamic effects of Photofrin. Antimicrob Agents Chemother 48:2000–2006CrossRefPubMedPubMedCentral
14.
go back to reference Mima EG, Pavarina AC, Dovigo LN, Vergani CE, Costa CAS, Kurashi C, Bagnato VS (2012) Susceptibility of Candida albicans to photodynamic therapy in a murine modelo of oral candidosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:392–401. doi:10.1016/j.tripleo.2009.10.006 CrossRef Mima EG, Pavarina AC, Dovigo LN, Vergani CE, Costa CAS, Kurashi C, Bagnato VS (2012) Susceptibility of Candida albicans to photodynamic therapy in a murine modelo of oral candidosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:392–401. doi:10.​1016/​j.​tripleo.​2009.​10.​006 CrossRef
15.
go back to reference Ferreira J, Menezes PFC, Kurachi C, Sibata C, Allison RR, Bagnato VS (2008) Photostability of different chlorine photosensitizers. Laser Phys Lett 5:156–161CrossRef Ferreira J, Menezes PFC, Kurachi C, Sibata C, Allison RR, Bagnato VS (2008) Photostability of different chlorine photosensitizers. Laser Phys Lett 5:156–161CrossRef
17.
18.
go back to reference Lambrechts SA, Aalders MC, Verbraak FD, Lagerberg JW, Dankert JB, Schuitmaker JJ (2005) Effect of albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin. J Photochem Photobiol B 79:51–57CrossRefPubMed Lambrechts SA, Aalders MC, Verbraak FD, Lagerberg JW, Dankert JB, Schuitmaker JJ (2005) Effect of albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin. J Photochem Photobiol B 79:51–57CrossRefPubMed
19.
20.
go back to reference Sanitá PV, Zago CE, Mima EG, Pavarina AC, Jorge JH, Machado AL, Vergani CE (2014) In vitro evaluation of the enzymatic activity profile of non-albicans Candida species isolated from patients with oral candidiasis with or without diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol 118:84–91. doi:10.1016/j.oooo.2014.03.020 CrossRefPubMed Sanitá PV, Zago CE, Mima EG, Pavarina AC, Jorge JH, Machado AL, Vergani CE (2014) In vitro evaluation of the enzymatic activity profile of non-albicans Candida species isolated from patients with oral candidiasis with or without diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol 118:84–91. doi:10.​1016/​j.​oooo.​2014.​03.​020 CrossRefPubMed
21.
22.
go back to reference Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12CrossRefPubMed Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12CrossRefPubMed
24.
go back to reference Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 88:16–20CrossRefPubMed Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 88:16–20CrossRefPubMed
25.
go back to reference Paz-Cristobal MP, Royo D, Rezusta A, Andrés-Ciriano E, Alejandre MC, Meis JF, Revillo MJ, Aspiroz C, Nonell S, Gilaberte Y (2014) Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains. Mycoses 57:35–42. doi:10.1111/myc.12099 CrossRefPubMed Paz-Cristobal MP, Royo D, Rezusta A, Andrés-Ciriano E, Alejandre MC, Meis JF, Revillo MJ, Aspiroz C, Nonell S, Gilaberte Y (2014) Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains. Mycoses 57:35–42. doi:10.​1111/​myc.​12099 CrossRefPubMed
28.
go back to reference Modrzewska B, Kurnatowski P (2015) Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol 61:3–9PubMed Modrzewska B, Kurnatowski P (2015) Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol 61:3–9PubMed
29.
go back to reference Rosseti IB, Chagas LR, Costa MS (2014) Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med Sci 29:1059–1064. doi:10.1007/s10103-013-1473-4 CrossRefPubMed Rosseti IB, Chagas LR, Costa MS (2014) Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med Sci 29:1059–1064. doi:10.​1007/​s10103-013-1473-4 CrossRefPubMed
31.
go back to reference Martins Jda S, Junqueira JC, Faria RL, Santiago NF, Rossoni RD, Colombo CE Jorge AO (2011) Antimicrobial photodynamic therapy in rat experimental candidiasis: evaluation of pathogenicity factors of Candida albicans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(1):71–77. doi:10.1016/j.tripleo.2010.08.012 CrossRefPubMed Martins Jda S, Junqueira JC, Faria RL, Santiago NF, Rossoni RD, Colombo CE Jorge AO (2011) Antimicrobial photodynamic therapy in rat experimental candidiasis: evaluation of pathogenicity factors of Candida albicans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(1):71–77. doi:10.​1016/​j.​tripleo.​2010.​08.​012 CrossRefPubMed
32.
go back to reference Freire F, de Barros PP, da Silva ÁD, Brito GN, Junqueira JC, Jorge AO (2015) Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation. Lasers Med Sci 30:1511–1518. doi:10.1007/s10103-015-1747-0 CrossRefPubMed Freire F, de Barros PP, da Silva ÁD, Brito GN, Junqueira JC, Jorge AO (2015) Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation. Lasers Med Sci 30:1511–1518. doi:10.​1007/​s10103-015-1747-0 CrossRefPubMed
35.
go back to reference Furlaneto-Maia L, Specian AF, Bizerra FC, de Oliveira MT, Furlaneto MC (2008) In vitro evaluation of putative virulence attributes of oral isolates of Candida spp. obtained from elderly healthy individuals. Mycopathologia 166:209–217. doi:10.1007/s11046-008-9139-7 CrossRefPubMed Furlaneto-Maia L, Specian AF, Bizerra FC, de Oliveira MT, Furlaneto MC (2008) In vitro evaluation of putative virulence attributes of oral isolates of Candida spp. obtained from elderly healthy individuals. Mycopathologia 166:209–217. doi:10.​1007/​s11046-008-9139-7 CrossRefPubMed
37.
go back to reference Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E, Hamblin MR, Ribeiro MS (2013) Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother 57:445–451. doi:10.1128/AAC.01451-12 CrossRefPubMedPubMedCentral Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E, Hamblin MR, Ribeiro MS (2013) Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother 57:445–451. doi:10.​1128/​AAC.​01451-12 CrossRefPubMedPubMedCentral
38.
go back to reference Kömerik N, Wilson M, Poole S (2000) The effect of photodynamic action on two virulence factors of Gram-negative bacteria. Photochem Photobiol 72:676–680CrossRefPubMed Kömerik N, Wilson M, Poole S (2000) The effect of photodynamic action on two virulence factors of Gram-negative bacteria. Photochem Photobiol 72:676–680CrossRefPubMed
39.
go back to reference Packer S, Bhatti M, Burns T, Wilson M (2000) Inactivation of proteolytic enzymes from Porphyromonas gingivalis using light-activated agents. Lasers Med Sci 15:24–30CrossRefPubMed Packer S, Bhatti M, Burns T, Wilson M (2000) Inactivation of proteolytic enzymes from Porphyromonas gingivalis using light-activated agents. Lasers Med Sci 15:24–30CrossRefPubMed
Metadata
Title
Virulence factors of fluconazole-susceptible and fluconazole-resistant Candida albicans after antimicrobial photodynamic therapy
Authors
Fernanda Alves
Ewerton Garcia de Oliveira Mima
Renata Caroline Polato Passador
Vanderlei Salvador Bagnato
Janaína Habib Jorge
Ana Cláudia Pavarina
Publication date
01-05-2017
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 4/2017
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2177-y

Other articles of this Issue 4/2017

Lasers in Medical Science 4/2017 Go to the issue