Skip to main content
Top
Published in: Lasers in Medical Science 3/2017

01-04-2017 | Original Article

Vehicle type affects filling of fractional laser-ablated channels imaged by optical coherence tomography

Authors: Uffe Høgh Olesen, Mette Mogensen, Merete Haedersdal

Published in: Lasers in Medical Science | Issue 3/2017

Login to get access

Abstract

Ablative fractional laser (AFXL) is an emerging method that enhances topical drug delivery. Penetrating the skin in microscopic, vertical channels, termed microscopic treatment zones (MTZs), the fractional technique circumvents the skin barrier and allows increased uptake of topically applied drugs. This study aims to elucidate the impact of vehicle type on the filling of MTZs from application of liquid, gel, and cream vehicles. Ex vivo pig skin was exposed to 10,600 nm fractional CO2 laser at 5% density, 120 μm beam diameter, and fluences of 40 and 80 mJ/microbeam (mJ/mb). Six repetitions were performed for each of six interventions (2 fluences and 3 vehicle types, n = 36). MTZ dimensions and filling by vehicle type were evaluated by optical coherence tomography, using blue tissue dye as a contrast-enhancing agent. Outcome measure was degree of MTZ filling assessed as percentages of empty, partially filled, and completely filled MTZs (108–127 MTZs/intervention analyzed) and evaluated statistically using Kruskal-Wallis and Dunn’s tests. MTZs reached mid-dermal levels of 225 μm (40 mJ/mb) and 375 μm (80 mJ/mb) penetration depths (p < 0.0001). Filling of MTZs depended on type of applied vehicle. At 80 mJ/mb, liquid (67% completely filled, p < 0.01) and gel (60%, p < 0.05) formulations filled MTZs significantly better than cream formulation (31%). At 40 mJ/mb, liquid and gel formulations filled 90% (p < 0.05) and 77% (p > 0.05) of MTZs completely versus 55% for cream formulation. Thus, filling was overall greater for more superficial MTZs. In conclusion, vehicle type affects filling of MTZs, which may be of importance for AFXL-assisted drug delivery.
Literature
1.
go back to reference Haedersdal M, Erlendsson AM, Paasch U, Anderson RR (2016) Translational medicine in the field of ablative fractional laser assisted drug delivery: a critical review from basics to current clinical status. J Am Acad Dermatol 74:981–1004CrossRefPubMed Haedersdal M, Erlendsson AM, Paasch U, Anderson RR (2016) Translational medicine in the field of ablative fractional laser assisted drug delivery: a critical review from basics to current clinical status. J Am Acad Dermatol 74:981–1004CrossRefPubMed
2.
go back to reference Hantash BM, Bedi VP, Chan KF, Zachary CB (2007) Ex vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg Med 39:87–95CrossRefPubMed Hantash BM, Bedi VP, Chan KF, Zachary CB (2007) Ex vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg Med 39:87–95CrossRefPubMed
3.
go back to reference Skovbølling Haak C, Illes M, Paasch U, Hædersdal M (2011) Histological evaluation of vertical laser channels from ablative fractional resurfacing: an ex vivo pig skin model. Lasers Med Sci 26:465–471CrossRefPubMed Skovbølling Haak C, Illes M, Paasch U, Hædersdal M (2011) Histological evaluation of vertical laser channels from ablative fractional resurfacing: an ex vivo pig skin model. Lasers Med Sci 26:465–471CrossRefPubMed
4.
go back to reference Hsiao CY, Sung HC, Hu S, Huang YL, Huang CH (2016) Fractional CO(2) laser pretreatment facilitates transdermal delivery of two vitamin C derivatives. Molecules 21 Hsiao CY, Sung HC, Hu S, Huang YL, Huang CH (2016) Fractional CO(2) laser pretreatment facilitates transdermal delivery of two vitamin C derivatives. Molecules 21
5.
go back to reference Hædersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR (2010) Fractional CO(2) laser-assisted drug delivery. Lasers Surg Med 42:113–122CrossRefPubMed Hædersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR (2010) Fractional CO(2) laser-assisted drug delivery. Lasers Surg Med 42:113–122CrossRefPubMed
6.
go back to reference Wenande E, Olesen UH, Nielsen MM, Janfelt C, Hansen SH, Anderson RR, Haedersdal M (2016) Fractional laser-assisted topical delivery leads to enhanced, accelerated and deeper cutaneous 5-fluorouracil uptake. Expert Opin Drug Deliv 28:1–11 Wenande E, Olesen UH, Nielsen MM, Janfelt C, Hansen SH, Anderson RR, Haedersdal M (2016) Fractional laser-assisted topical delivery leads to enhanced, accelerated and deeper cutaneous 5-fluorouracil uptake. Expert Opin Drug Deliv 28:1–11
7.
go back to reference Taudorf EH, Lerche CM, Erlendsson AM, Philipsen PA, Hansen SH, Janfelt C, Paasch U, Anderson RR, Haedersdal M (2016) Fractional laser-assisted drug delivery: laser channel depth influences biodistribution and skin deposition of methotrexate. Lasers Surg Med 48:519–529CrossRefPubMed Taudorf EH, Lerche CM, Erlendsson AM, Philipsen PA, Hansen SH, Janfelt C, Paasch U, Anderson RR, Haedersdal M (2016) Fractional laser-assisted drug delivery: laser channel depth influences biodistribution and skin deposition of methotrexate. Lasers Surg Med 48:519–529CrossRefPubMed
8.
go back to reference Taudorf EH, Lerche CM, Vissing AC, Philipsen PA, Hannibal J, D’Alvise J, Hansen SH, Janfelt C, Paasch U, Anderson RR, Haedersdal M (2015) Topically applied methotrexate is rapidly delivered into skin by fractional laser ablation. Expert Opin Drug Deliv 12:1059–1069CrossRefPubMed Taudorf EH, Lerche CM, Vissing AC, Philipsen PA, Hannibal J, D’Alvise J, Hansen SH, Janfelt C, Paasch U, Anderson RR, Haedersdal M (2015) Topically applied methotrexate is rapidly delivered into skin by fractional laser ablation. Expert Opin Drug Deliv 12:1059–1069CrossRefPubMed
9.
go back to reference Mahmoud BH, Burnett C, Ozog D (2015) Prospective randomized controlled study to determine the effect of topical application of botulinum toxin A for crow’s feet after treatment with ablative fractional CO2 laser. Dermatol Surg 41 Suppl 1:S75–S81CrossRefPubMed Mahmoud BH, Burnett C, Ozog D (2015) Prospective randomized controlled study to determine the effect of topical application of botulinum toxin A for crow’s feet after treatment with ablative fractional CO2 laser. Dermatol Surg 41 Suppl 1:S75–S81CrossRefPubMed
10.
go back to reference Chen X, Shah D, Kositratna G, Manstein D, Anderson RR, Wu MX (2012) Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J Control Release 159:43–51CrossRefPubMedPubMedCentral Chen X, Shah D, Kositratna G, Manstein D, Anderson RR, Wu MX (2012) Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J Control Release 159:43–51CrossRefPubMedPubMedCentral
11.
go back to reference Bhatta AK, Keyal U, Huang X, Zhao JJ (2016) Fractional carbon-dioxide (CO2) laser-assisted topical therapy for the treatment of onychomycosis. J Am Acad Dermatol 74:916–923CrossRefPubMed Bhatta AK, Keyal U, Huang X, Zhao JJ (2016) Fractional carbon-dioxide (CO2) laser-assisted topical therapy for the treatment of onychomycosis. J Am Acad Dermatol 74:916–923CrossRefPubMed
12.
go back to reference Meesters AA, Bakker MM, de Rie MA, Wolkerstorfer A (2016) Fractional CO2 laser assisted delivery of topical anesthetics: a randomized controlled pilot study. Lasers Surg Med 48:208–211CrossRefPubMed Meesters AA, Bakker MM, de Rie MA, Wolkerstorfer A (2016) Fractional CO2 laser assisted delivery of topical anesthetics: a randomized controlled pilot study. Lasers Surg Med 48:208–211CrossRefPubMed
13.
go back to reference Park SM, Kim GW, Mun JH, Song M, Kim HS, Kim BS, Kim MB, Ko HC (2016) Fractional laser-assisted topical imiquimod 5% cream treatment for recalcitrant common warts in children: a pilot study. Dermatol Surg 42:1340–1346CrossRefPubMed Park SM, Kim GW, Mun JH, Song M, Kim HS, Kim BS, Kim MB, Ko HC (2016) Fractional laser-assisted topical imiquimod 5% cream treatment for recalcitrant common warts in children: a pilot study. Dermatol Surg 42:1340–1346CrossRefPubMed
14.
go back to reference Song HS, Jung SE, Jang YH, Kang HY, Lee ES, Kim YC (2015) Fractional carbon dioxide laser-assisted photodynamic therapy for patients with actinic keratosis. Photodermatol Photoimmunol Photomed 31:296–301CrossRefPubMed Song HS, Jung SE, Jang YH, Kang HY, Lee ES, Kim YC (2015) Fractional carbon dioxide laser-assisted photodynamic therapy for patients with actinic keratosis. Photodermatol Photoimmunol Photomed 31:296–301CrossRefPubMed
15.
go back to reference Tian T, Luo Y, Jiang T, Dong Y, Yu A, Chen H, Gao X, Li Y (2016) Clinical effect of ablative fractional laser-assisted topical anesthesia on human skin: a randomized pilot study. J Cosmet Laser Ther 18:409–412CrossRefPubMed Tian T, Luo Y, Jiang T, Dong Y, Yu A, Chen H, Gao X, Li Y (2016) Clinical effect of ablative fractional laser-assisted topical anesthesia on human skin: a randomized pilot study. J Cosmet Laser Ther 18:409–412CrossRefPubMed
16.
go back to reference Banzhaf CA, Wind BS, Mogensen M, Meesters AA, Paasch U, Wolkerstorfer A, Haedersdal M (2016) Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy. Lasers Surg Med 48:157–165CrossRefPubMed Banzhaf CA, Wind BS, Mogensen M, Meesters AA, Paasch U, Wolkerstorfer A, Haedersdal M (2016) Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy. Lasers Surg Med 48:157–165CrossRefPubMed
17.
go back to reference Sattler EC, Poloczek K, Kästle R, Welzel J (2013) Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol 69:e165–e173CrossRefPubMed Sattler EC, Poloczek K, Kästle R, Welzel J (2013) Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol 69:e165–e173CrossRefPubMed
18.
go back to reference Tsai MT, Yang CH, Shen SC, Lee YJ, Chang FY, Feng CS (2013) Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography. Biomed Opt Express 4:2362–2375CrossRefPubMedPubMedCentral Tsai MT, Yang CH, Shen SC, Lee YJ, Chang FY, Feng CS (2013) Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography. Biomed Opt Express 4:2362–2375CrossRefPubMedPubMedCentral
19.
go back to reference Sattler E, Kästle R, Welzel J (2013) Optical coherence tomography in dermatology. J Biomed Opt 18:061224CrossRefPubMed Sattler E, Kästle R, Welzel J (2013) Optical coherence tomography in dermatology. J Biomed Opt 18:061224CrossRefPubMed
20.
go back to reference Mogensen M, Morsy HA, Thrane L, Jemec GB (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217:14–20CrossRefPubMed Mogensen M, Morsy HA, Thrane L, Jemec GB (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217:14–20CrossRefPubMed
21.
go back to reference Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303:457–473CrossRefPubMed Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303:457–473CrossRefPubMed
22.
go back to reference Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L, Jemec GB (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35:965–972CrossRefPubMed Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L, Jemec GB (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35:965–972CrossRefPubMed
23.
go back to reference Ring HC, Themstrup L, Banzhaf CA, Jemec GB, Mogensen M (2016) Dynamic optical coherence tomography capillaroscopy: a new imaging tool in autoimmune connective tissue disease. JAMA Dermatol 152 Ring HC, Themstrup L, Banzhaf CA, Jemec GB, Mogensen M (2016) Dynamic optical coherence tomography capillaroscopy: a new imaging tool in autoimmune connective tissue disease. JAMA Dermatol 152
24.
go back to reference Lee WR, Shen SC, Aljuffali IA, Li YC, Fang JY (2014) Impact of different vehicles for laser-assisted drug permeation via skin: full-surface versus fractional ablation. Pharm Res 31:382–393CrossRefPubMed Lee WR, Shen SC, Aljuffali IA, Li YC, Fang JY (2014) Impact of different vehicles for laser-assisted drug permeation via skin: full-surface versus fractional ablation. Pharm Res 31:382–393CrossRefPubMed
25.
go back to reference Forster B, Klein A, Szeimies RM, Maisch T (2010) Penetration enhancement of two topical 5-aminolaevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Exp Dermatol 19:806–812CrossRefPubMed Forster B, Klein A, Szeimies RM, Maisch T (2010) Penetration enhancement of two topical 5-aminolaevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Exp Dermatol 19:806–812CrossRefPubMed
26.
go back to reference Bachhav YG, Heinrich A, Kalia YN (2011) Using laser microporation to improve transdermal delivery of diclofenac: increasing bioavailability and the range of therapeutic applications. Eur J Pharm Biopharm 78:408–414CrossRefPubMed Bachhav YG, Heinrich A, Kalia YN (2011) Using laser microporation to improve transdermal delivery of diclofenac: increasing bioavailability and the range of therapeutic applications. Eur J Pharm Biopharm 78:408–414CrossRefPubMed
27.
go back to reference Bachhav YG, Summer S, Heinrich A, Bragagna T, Böhler C, Kalia YN (2010) Effect of controlled laser microporation on drug transport kinetics into and across the skin. J Control Release 146:31–36CrossRefPubMed Bachhav YG, Summer S, Heinrich A, Bragagna T, Böhler C, Kalia YN (2010) Effect of controlled laser microporation on drug transport kinetics into and across the skin. J Control Release 146:31–36CrossRefPubMed
28.
go back to reference Barbero AM, Frasch HF (2009) Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro 23:1–13CrossRefPubMed Barbero AM, Frasch HF (2009) Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro 23:1–13CrossRefPubMed
29.
go back to reference Jakasa I, Kezic S (2008) Evaluation of in-vivo animal and in-vitro models for prediction of dermal absorption in man. Hum Exp Toxicol 27:281–288CrossRefPubMed Jakasa I, Kezic S (2008) Evaluation of in-vivo animal and in-vitro models for prediction of dermal absorption in man. Hum Exp Toxicol 27:281–288CrossRefPubMed
30.
go back to reference Kim W, Applegate BE (2015) In vivo molecular contrast OCT imaging of methylene blue. Opt Lett 40:1426–1429CrossRefPubMed Kim W, Applegate BE (2015) In vivo molecular contrast OCT imaging of methylene blue. Opt Lett 40:1426–1429CrossRefPubMed
Metadata
Title
Vehicle type affects filling of fractional laser-ablated channels imaged by optical coherence tomography
Authors
Uffe Høgh Olesen
Mette Mogensen
Merete Haedersdal
Publication date
01-04-2017
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 3/2017
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2168-z

Other articles of this Issue 3/2017

Lasers in Medical Science 3/2017 Go to the issue