Skip to main content
Top
Published in: Lasers in Medical Science 1/2015

01-01-2015 | Original Article

Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy

Authors: Silvana Belletti, Jacopo Uggeri, Giovanni Mergoni, Paolo Vescovi, Elisabetta Merigo, Carlo Fornaini, Samir Nammour, Maddalena Manfredi, Rita Gatti

Published in: Lasers in Medical Science | Issue 1/2015

Login to get access

Abstract

Low-level laser therapy (LLLT) is widely used in tissue regeneration and pain therapy. Mitochondria are supposed to be one of the main cellular targets, due to the presence of cytochrome C oxidase as photo-acceptor. Laser stimulation could influence mitochondria metabolism affecting mainly transmembrane mitochondrial potential (Δψm). The aim of our study is to evaluate “in vitro” the early mitochondrial response after irradiation with a 915 GaAs laser. Since some evidences suggest that cellular response to LLLT can be differently modulated by the mode of irradiation, we would like to evaluate whether there are changes in the mitochondrial potential linked to the use of the laser treatments applied with continuous wave (CW) in respect to those applied with pulsed wave (PW). In this study, we analyzed effects of irradiation with a 915-nm GaAs diode laser on human dermal fibroblast. We compared effects of irradiation applied with either CW or PW at different fluences 45-15-5 J/cm2 on Δψm. Laser scanning microscopy (LSM) was used in living cells to detect ROS (reactive oxygen species) using calcein AM and real-time changes of and Δψm following distribution of the potentiometric probe tetramethylrhodamine methyl ester (TMRM). At higher doses (45–15 J/cm2), fibroblasts showed a dose-dependent decrement of Δψm in either the modalities employed, with higher amplitudes in CW-treated cells. This behavior is transient and not followed by any sign of toxicity, even if reactive oxygen species generation was observed. At 5 J/cm2, CW irradiation determined a little decrease (5 %) of the baseline level of Δψm, while opposite behavior was shown when cells were irradiated with PW, with a 10 % increment. Our results suggest that different responses observed at cellular level with low doses of irradiation, could be at the basis of efficacy of LLLT in clinical application, performed with PW rather than CW modalities.
Literature
1.
go back to reference Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–40PubMedCrossRef Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–40PubMedCrossRef
2.
go back to reference Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–68PubMedCrossRef Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–68PubMedCrossRef
3.
go back to reference Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg 19:29–33PubMedCrossRef Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg 19:29–33PubMedCrossRef
4.
go back to reference Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef
5.
go back to reference Pastore D, Greco M, Passarella S (2000) Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol 76:863–70PubMedCrossRef Pastore D, Greco M, Passarella S (2000) Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol 76:863–70PubMedCrossRef
6.
go back to reference Szundi I, Liao GL, Einarsdóttir O (2001) Near-infrared time-resolved optical absorption studies of the reaction of fully reduced cytochrome c oxidase with dioxygen. Biochemistry 40:2332–9PubMedCrossRef Szundi I, Liao GL, Einarsdóttir O (2001) Near-infrared time-resolved optical absorption studies of the reaction of fully reduced cytochrome c oxidase with dioxygen. Biochemistry 40:2332–9PubMedCrossRef
7.
go back to reference Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B 81:98–106PubMedCrossRef Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B 81:98–106PubMedCrossRef
9.
go back to reference Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–60PubMed Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–60PubMed
10.
go back to reference Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–9PubMedCrossRef Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–9PubMedCrossRef
11.
go back to reference Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127:2048–57PubMedCrossRef Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127:2048–57PubMedCrossRef
12.
go back to reference Wu S, Xing D, Gao X, Chen WR (2009) High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 218:603–11PubMedCrossRef Wu S, Xing D, Gao X, Chen WR (2009) High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 218:603–11PubMedCrossRef
13.
go back to reference Wu S, Xing D, Chen T, Chen WR (2007) Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques. J Biomed Opt 12(064015):1–9 Wu S, Xing D, Chen T, Chen WR (2007) Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques. J Biomed Opt 12(064015):1–9
14.
go back to reference Bortoletto R, Silva NS, Zângaro RA, Pacheco MT, Da Matta RA, Pacheco-Soares C (2004) Mitochondrial membrane potential after low-power laser irradiation. Lasers Med Sci 18:204–6PubMedCrossRef Bortoletto R, Silva NS, Zângaro RA, Pacheco MT, Da Matta RA, Pacheco-Soares C (2004) Mitochondrial membrane potential after low-power laser irradiation. Lasers Med Sci 18:204–6PubMedCrossRef
15.
go back to reference Pires Oliveira D, Oliveira F, Machado A, Zangaro R, Pacheco-Soares C (2010) Laser biomodulation on L929 cell culture. Photomed Laser Surg 28:167–71PubMedCrossRef Pires Oliveira D, Oliveira F, Machado A, Zangaro R, Pacheco-Soares C (2010) Laser biomodulation on L929 cell culture. Photomed Laser Surg 28:167–71PubMedCrossRef
16.
go back to reference Hashmi JT, Huang YY, Sharma SK, Kurup DB, De Taboada L, Carroll JD, Hamblin MR (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42:450–66PubMedCentralPubMedCrossRef Hashmi JT, Huang YY, Sharma SK, Kurup DB, De Taboada L, Carroll JD, Hamblin MR (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42:450–66PubMedCentralPubMedCrossRef
17.
go back to reference Gatti R, Orlandini G, Uggeri J, Belletti S, Galli C, Raspanti M, Scandroglio R, Guizzardi S (2008) Analysis of living cells grown on different titanium surfaces by time-lapse confocal microscopy. Micron 39:137–43PubMedCrossRef Gatti R, Orlandini G, Uggeri J, Belletti S, Galli C, Raspanti M, Scandroglio R, Guizzardi S (2008) Analysis of living cells grown on different titanium surfaces by time-lapse confocal microscopy. Micron 39:137–43PubMedCrossRef
18.
go back to reference Gatti R, Belletti S, Orlandini G, Bussolati O, Dall’Asta V, Gazzola GC (1998) Comparison of annexin V and calcein-AM as early vital markers of apoptosis in adherent cells by confocal laser microscopy. J Histochem Cytochem 46:895–900PubMedCrossRef Gatti R, Belletti S, Orlandini G, Bussolati O, Dall’Asta V, Gazzola GC (1998) Comparison of annexin V and calcein-AM as early vital markers of apoptosis in adherent cells by confocal laser microscopy. J Histochem Cytochem 46:895–900PubMedCrossRef
19.
go back to reference Uggeri J, Gatti R, Belletti S, Scandroglio R, Corradini R, Rotoli BM, Orlandini G (2004) Calcein-AM is a detector of intracellular oxidative activity. Histochem Cell Biol 122:499–505PubMedCrossRef Uggeri J, Gatti R, Belletti S, Scandroglio R, Corradini R, Rotoli BM, Orlandini G (2004) Calcein-AM is a detector of intracellular oxidative activity. Histochem Cell Biol 122:499–505PubMedCrossRef
20.
go back to reference Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–74PubMedCrossRef Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–74PubMedCrossRef
21.
go back to reference Wang F, Chen TS, Xing D, Wang JJ, Wu YX (2005) Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg Med 36:2–7PubMedCrossRef Wang F, Chen TS, Xing D, Wang JJ, Wu YX (2005) Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg Med 36:2–7PubMedCrossRef
22.
go back to reference Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1:547–552PubMedCrossRef Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1:547–552PubMedCrossRef
23.
go back to reference Korge P, Yang L, Yang JH, Wang Y, Qu Z, Weiss JN (2011) Protective role of transient pore openings in calcium handling by cardiac mitochondria. J Biol Chem 286(40):34851–857PubMedCentralPubMedCrossRef Korge P, Yang L, Yang JH, Wang Y, Qu Z, Weiss JN (2011) Protective role of transient pore openings in calcium handling by cardiac mitochondria. J Biol Chem 286(40):34851–857PubMedCentralPubMedCrossRef
24.
go back to reference Saotome M, Hideki K, Yaguchi Y, Tanaka T, Urishida T, Satoh H, Hayashi H (2009) Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia reperfusion injury. Am J Physiol Haert Circ Physiol 296:H1125–1132CrossRef Saotome M, Hideki K, Yaguchi Y, Tanaka T, Urishida T, Satoh H, Hayashi H (2009) Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia reperfusion injury. Am J Physiol Haert Circ Physiol 296:H1125–1132CrossRef
25.
go back to reference Reddy GK (2003) Comparison of the photostimulatory effect of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rats wounds. Lasers Surg Med 33:344–51PubMedCrossRef Reddy GK (2003) Comparison of the photostimulatory effect of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rats wounds. Lasers Surg Med 33:344–51PubMedCrossRef
26.
go back to reference Silveira PC, Silva LA, Freitas TP, Latini A, Pinho RA (2011) Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing. Lasers Med Sci 26:125–31PubMedCrossRef Silveira PC, Silva LA, Freitas TP, Latini A, Pinho RA (2011) Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing. Lasers Med Sci 26:125–31PubMedCrossRef
27.
go back to reference Brondom P, Sadler I, Lanzafame RJ (2009) Pulsing influences photoradiation outcomes in cell culture. Lases Surg Med 41:222–226CrossRef Brondom P, Sadler I, Lanzafame RJ (2009) Pulsing influences photoradiation outcomes in cell culture. Lases Surg Med 41:222–226CrossRef
28.
go back to reference Barolet D, Duplay P, Jacomy H, Auclair M (2010) Importance of pulsing illumination parameters in low-level-light therapy. J Biomed Opt 15(048005):1–8 Barolet D, Duplay P, Jacomy H, Auclair M (2010) Importance of pulsing illumination parameters in low-level-light therapy. J Biomed Opt 15(048005):1–8
Metadata
Title
Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy
Authors
Silvana Belletti
Jacopo Uggeri
Giovanni Mergoni
Paolo Vescovi
Elisabetta Merigo
Carlo Fornaini
Samir Nammour
Maddalena Manfredi
Rita Gatti
Publication date
01-01-2015
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 1/2015
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1651-z

Other articles of this Issue 1/2015

Lasers in Medical Science 1/2015 Go to the issue