Skip to main content
Top
Published in: Lasers in Medical Science 3/2013

01-05-2013 | Original Article

Irradiation of 850-nm laser light changes the neural activities in rat primary visual cortex

Authors: Xiao Y. Wu, Zong X. Mou, Wen S. Hou, Xiao L. Zheng, Jun P. Yao, Guan B. Shang, Zheng Q. Yin

Published in: Lasers in Medical Science | Issue 3/2013

Login to get access

Abstract

Although infrared laser was proven to be an alternative approach for neural stimulation, there is very little known about the neural response to infrared laser irradiation in visual cortex. This study is to investigate the effect of near-infrared laser irradiation on neural activities at the cortex level. A 850-nm pigtailed diode laser was applied to stimulate the rat primary visual cortex while the horizontal black and white stripe pattern was used as standard visual stimulation to evoke visual-evoked potential (VEP). Both amplitude and latency of VEP P100 was measured with or without infrared pulse stimulation applied in rat primary visual cortex. Paired t test and one-way analysis of variance were used to evaluate the impact of infrared irradiation and its pulse width on the amplitudes and latencies of P100, respectively. The results from our preliminary study revealed that, the pulsed near-infrared laser depressed the VEP amplitude and shortened the latency of P100; with the increment of pulse width of infrared irradiation, further decline of VEP amplitude and much shortened latency of P100 were observed. The present work suggests that near-infrared laser irradiation can alter the neural activities in primary visual cortex transiently, and could provide a novel contactless artificial neural stimulus to brain cortex with high spatial selectivity.
Literature
2.
go back to reference Wells J, Kao C, Jansen ED et al (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10:064003–064012PubMedCrossRef Wells J, Kao C, Jansen ED et al (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10:064003–064012PubMedCrossRef
3.
go back to reference Tozburun S, Cilip CM, Lagoda GA, Burnett AL, Fried NM (2010) Continuous-wave infrared optical nerve stimulation for potential diagnostic applications. J Biomed Opt 15(5):055012–055015PubMedCrossRef Tozburun S, Cilip CM, Lagoda GA, Burnett AL, Fried NM (2010) Continuous-wave infrared optical nerve stimulation for potential diagnostic applications. J Biomed Opt 15(5):055012–055015PubMedCrossRef
6.
go back to reference Izzo AD, Suh E, Pathria J, Walsh JT, Whitlon DS, Richter C-P (2007) Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J Biomed Opt 12(2):021008PubMedCrossRef Izzo AD, Suh E, Pathria J, Walsh JT, Whitlon DS, Richter C-P (2007) Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J Biomed Opt 12(2):021008PubMedCrossRef
7.
go back to reference Izzo AD, Richter CP, Jansen ED, Walsh JT et al (2006) Laser stimulation of the auditory nerve. Lasers Surg Med 38(8):745–753PubMedCrossRef Izzo AD, Richter CP, Jansen ED, Walsh JT et al (2006) Laser stimulation of the auditory nerve. Lasers Surg Med 38(8):745–753PubMedCrossRef
8.
go back to reference Izzo AD, Walsh JT, Jansen ED, BendettM Webb J, Ralph H, Richter CP (2007) Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans Biomed Eng 54(6):1108–1114PubMedCrossRef Izzo AD, Walsh JT, Jansen ED, BendettM Webb J, Ralph H, Richter CP (2007) Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans Biomed Eng 54(6):1108–1114PubMedCrossRef
9.
10.
go back to reference Wesselmann U, Lin SF, Rymer WZ (1991) Effects of Q-switched Nd: YAG laser irradiation on neural impulse propagation: I. Spinal cord. Physiol Chem Phys Med NMR 23(2):67–80PubMed Wesselmann U, Lin SF, Rymer WZ (1991) Effects of Q-switched Nd: YAG laser irradiation on neural impulse propagation: I. Spinal cord. Physiol Chem Phys Med NMR 23(2):67–80PubMed
11.
go back to reference Wells J, Kao C, Mariappan K et al (2005) Optical stimulation of neural tissue in vivo. Opt Lett 31:235–238 Wells J, Kao C, Mariappan K et al (2005) Optical stimulation of neural tissue in vivo. Opt Lett 31:235–238
13.
go back to reference Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34:277–284. doi:10.1002/lsm.20006 PubMedCrossRef Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34:277–284. doi:10.​1002/​lsm.​20006 PubMedCrossRef
14.
go back to reference Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Neurotrans-mitter release changes induced by low power 830 nm diode laser irradiation on the neuromuscular junctions of the mouse. Lasers Surg Med 35:236–241. doi:10.1002/lsm.20087 PubMedCrossRef Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Neurotrans-mitter release changes induced by low power 830 nm diode laser irradiation on the neuromuscular junctions of the mouse. Lasers Surg Med 35:236–241. doi:10.​1002/​lsm.​20087 PubMedCrossRef
15.
go back to reference Cayce JM, Kao C, Malphrus JD et al (2010) Infrared neural stimulation of thalamocortical brain slices. IEEE J Sel Top Quant 16(3):565–572CrossRef Cayce JM, Kao C, Malphrus JD et al (2010) Infrared neural stimulation of thalamocortical brain slices. IEEE J Sel Top Quant 16(3):565–572CrossRef
16.
go back to reference Cayce JM, Friedman RM, Jansen ED et al (2011) Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. NeuroImage 57(1):155–166PubMedCrossRef Cayce JM, Friedman RM, Jansen ED et al (2011) Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. NeuroImage 57(1):155–166PubMedCrossRef
17.
go back to reference Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T, Hamblin MR (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859. doi:10.1002/lsm.21100 PubMedCrossRef Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T, Hamblin MR (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859. doi:10.​1002/​lsm.​21100 PubMedCrossRef
18.
go back to reference Kataoka Y, Oda-Mochizuki N, Tamura Y, Cui Y, Yamada H (2003) Activation of potassium channels is possibly involved in inhibition of neurotransmission of the central nervous system by low-level near-infrared laser irradiation. Neurosci Res 46(suppl 1):143 Kataoka Y, Oda-Mochizuki N, Tamura Y, Cui Y, Yamada H (2003) Activation of potassium channels is possibly involved in inhibition of neurotransmission of the central nervous system by low-level near-infrared laser irradiation. Neurosci Res 46(suppl 1):143
19.
go back to reference Thut G, Northoff G, Ives JR et al (2003) Effects of single-pulse transcranial magnetic stimulation(TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clin Neurophysiol 114:2071–2080PubMedCrossRef Thut G, Northoff G, Ives JR et al (2003) Effects of single-pulse transcranial magnetic stimulation(TMS) on functional brain activity: a combined event-related TMS and evoked potential study. Clin Neurophysiol 114:2071–2080PubMedCrossRef
20.
go back to reference Thut G, Ives JR, Kampmann F et al (2005) A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Methods 141(2):207–217PubMedCrossRef Thut G, Ives JR, Kampmann F et al (2005) A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Methods 141(2):207–217PubMedCrossRef
21.
go back to reference Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates, Compact 3rd Edition CD-Rom. Academic Press, San Diego Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates, Compact 3rd Edition CD-Rom. Academic Press, San Diego
22.
go back to reference Zhang K, Katz E, Kim DH et al (2010) Common-path optical coherence tomography guided fibre probe for spatially precise optical nerve stimulation. Electron Lett 46(2):118–120CrossRef Zhang K, Katz E, Kim DH et al (2010) Common-path optical coherence tomography guided fibre probe for spatially precise optical nerve stimulation. Electron Lett 46(2):118–120CrossRef
23.
go back to reference Clark VP, Fan S, Hillyard SA (1995) Identification of early visually evoked potential generators by retinotopic and opographic analysis. Hum Brain Mapp 2(3):170–187CrossRef Clark VP, Fan S, Hillyard SA (1995) Identification of early visually evoked potential generators by retinotopic and opographic analysis. Hum Brain Mapp 2(3):170–187CrossRef
24.
go back to reference Shigeto H, Tobimatsu S, Yamamoto T et al (1998) Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145. J Neurology Sci 156(2):186–194CrossRef Shigeto H, Tobimatsu S, Yamamoto T et al (1998) Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145. J Neurology Sci 156(2):186–194CrossRef
25.
go back to reference Vanni S, Tanskanen T, Seppa M et al (2001) Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad Sci 98(5):2776–2780PubMedCrossRef Vanni S, Tanskanen T, Seppa M et al (2001) Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad Sci 98(5):2776–2780PubMedCrossRef
26.
go back to reference Chowdhury V, Morley JW, Coroneo MT (2004) Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci 11:750–755PubMedCrossRef Chowdhury V, Morley JW, Coroneo MT (2004) Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci 11:750–755PubMedCrossRef
27.
go back to reference McCaughey RG, Chlebicki C, Wong B (2010) Novel wavelengths for laser nerve stimulation. Laser Surg Med 42:69–75CrossRef McCaughey RG, Chlebicki C, Wong B (2010) Novel wavelengths for laser nerve stimulation. Laser Surg Med 42:69–75CrossRef
28.
go back to reference Feng HJ, Kao C, Gallagher MJ et al (2010) Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation. J Neurosci Methods 192:110–114PubMedCrossRef Feng HJ, Kao C, Gallagher MJ et al (2010) Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation. J Neurosci Methods 192:110–114PubMedCrossRef
29.
30.
go back to reference Orchardson R, Peacock JM, Witters CJ (1997) Effect of pulsed Nd: YAG laser radiation on action potential conduction in isolated mammalian spinal nerves. Laser Surg Med 21:142–148CrossRef Orchardson R, Peacock JM, Witters CJ (1997) Effect of pulsed Nd: YAG laser radiation on action potential conduction in isolated mammalian spinal nerves. Laser Surg Med 21:142–148CrossRef
31.
go back to reference Reichenbach A, Whittingstall K, Thielscher A (2011) Effects of transcranial magnetic stimulation on visual evoked potentials in a visual suppression task. NeuroImage 54(2):1375–1384PubMedCrossRef Reichenbach A, Whittingstall K, Thielscher A (2011) Effects of transcranial magnetic stimulation on visual evoked potentials in a visual suppression task. NeuroImage 54(2):1375–1384PubMedCrossRef
32.
go back to reference Rajguru SM, Matic AI, Robinson AM, Fishman AJ et al (2010) Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear Res 269(1–2):102–111PubMedCrossRef Rajguru SM, Matic AI, Robinson AM, Fishman AJ et al (2010) Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear Res 269(1–2):102–111PubMedCrossRef
33.
go back to reference Kogure S, Takahashi S, Saito N, Kozuka K, Matsuda Y (2010) Effects of low-power laser irradiation on the threshold of electrically induced paroxysmal discharge in rabbit hippocampus CA1. Lasers Med Sci 25(1):79–86PubMedCrossRef Kogure S, Takahashi S, Saito N, Kozuka K, Matsuda Y (2010) Effects of low-power laser irradiation on the threshold of electrically induced paroxysmal discharge in rabbit hippocampus CA1. Lasers Med Sci 25(1):79–86PubMedCrossRef
34.
go back to reference Wenzel GI, Balster S, Zhang K, Lim HH, Reich U et al (2009) Green laser light activates the inner ear. J Biomed Opt 14(4):044007PubMedCrossRef Wenzel GI, Balster S, Zhang K, Lim HH, Reich U et al (2009) Green laser light activates the inner ear. J Biomed Opt 14(4):044007PubMedCrossRef
Metadata
Title
Irradiation of 850-nm laser light changes the neural activities in rat primary visual cortex
Authors
Xiao Y. Wu
Zong X. Mou
Wen S. Hou
Xiao L. Zheng
Jun P. Yao
Guan B. Shang
Zheng Q. Yin
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 3/2013
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1160-x

Other articles of this Issue 3/2013

Lasers in Medical Science 3/2013 Go to the issue