Skip to main content
Top
Published in: Lasers in Medical Science 1/2013

01-01-2013 | Original Article

Effects of low-intensity laser therapy on periodontal tissue remodeling during relapse and retention of orthodontically moved teeth

Authors: Su-Jung Kim, Yoon-Goo Kang, Jong-Hyun Park, Eun-Cheol Kim, Young-Guk Park

Published in: Lasers in Medical Science | Issue 1/2013

Login to get access

Abstract

This study was designed to investigate the effects of low-intensity laser therapy (LILT) on periodontal ligament (PDL) remodeling during relapse and retention after the completion of orthodontic movement. The maxillary central incisors (n = 104) of the 52 rats were randomly divided into five groups according to the treatment modality: baseline control group without any intervention (n = 8); relapse group without retainer after tooth movement (n = 24); retention group with fixed retainer after tooth movement (n = 24); lased relapse group without retainer after tooth movement and LILT (n = 24); lased retention group with retainer after tooth movement and LILT (n = 24). LILT was daily performed using a gallium–aluminum–arsenide diode laser in a biostimulation mode: wavelength of 780 nm, continuous waves at 70 mW output power, a preset low intensity of 1.75 W/cm2 in contact mode, resulting in energy dose of 5 J/cm2 per irradiation for 3 s. The animals were euthanized on days 1, 3, and 7 after removal of the orthodontic appliance. Real-time RT-PCR was performed for quantitative analysis of matrix metalloproteinases mRNA expression. Immunoreactivities of collagen and tissue inhibitor of metalloproteinase were observed on the compression and tension sides. LILT significantly facilitated the expression of five tested MMP mRNAs in both relapse and retention groups. TIMP-1 immunoreactivity was inhibited by LILT in both groups, whereas Col-I immunoreactivity was increased by LILT only in the retention group. These results indicate that LILT would act differently on the stability after orthodontic treatment according to additional retainer wearing or not. LILT when combined with a retainer on the moved teeth may shorten the retention period by accelerating periodontal remodeling in the new tooth position, whereas, LILT on the moved teeth left without any retainer would rather increase the rate of relapse after treatment.
Literature
1.
go back to reference Parker GR (1972) Transseptal fibers and relapse following bodily retraction of teeth: a histologic study. Am J Orthod 61:331–334PubMedCrossRef Parker GR (1972) Transseptal fibers and relapse following bodily retraction of teeth: a histologic study. Am J Orthod 61:331–334PubMedCrossRef
2.
go back to reference Stamenkovic I (2003) Extracellular matrix remodeling: the role of matrix metalloproteinases. J Pathol 200:448–64PubMedCrossRef Stamenkovic I (2003) Extracellular matrix remodeling: the role of matrix metalloproteinases. J Pathol 200:448–64PubMedCrossRef
3.
go back to reference Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M (2003) Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res 82:646–51PubMedCrossRef Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M (2003) Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res 82:646–51PubMedCrossRef
4.
go back to reference Takahashi I, Onodera K, Nishimura M, Mitnai H, Sasano Y, Mitani H (2006) Expression of genes for gelatinases and tissue inhibitors of metalloproteinases in periodontal tissues during orthodontic tooth movement. J Mol Hist 37:333–42CrossRef Takahashi I, Onodera K, Nishimura M, Mitnai H, Sasano Y, Mitani H (2006) Expression of genes for gelatinases and tissue inhibitors of metalloproteinases in periodontal tissues during orthodontic tooth movement. J Mol Hist 37:333–42CrossRef
5.
go back to reference van der Pauw MT, Van den Bos T, Everts V, Beertsen W (2001) Phagocytosis of fibronectin and collagens type I, III, and V by human gingival and periodontal ligament fibroblasts in vitro. J Periodontol 72:1340–7PubMedCrossRef van der Pauw MT, Van den Bos T, Everts V, Beertsen W (2001) Phagocytosis of fibronectin and collagens type I, III, and V by human gingival and periodontal ligament fibroblasts in vitro. J Periodontol 72:1340–7PubMedCrossRef
6.
go back to reference Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993) Matirx metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250PubMed Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993) Matirx metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250PubMed
7.
go back to reference Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel Y, Tenenbaum H (2000) Expression of mRNAs encoding for alpha and beta integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 79:1712–6PubMedCrossRef Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel Y, Tenenbaum H (2000) Expression of mRNAs encoding for alpha and beta integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 79:1712–6PubMedCrossRef
8.
go back to reference Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res 33:500–8PubMedCrossRef Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res 33:500–8PubMedCrossRef
9.
go back to reference Bumann A, Carvalho RS, Schwarzer CL, Yen EHK (1997) Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod 19:29–37PubMedCrossRef Bumann A, Carvalho RS, Schwarzer CL, Yen EHK (1997) Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod 19:29–37PubMedCrossRef
10.
go back to reference Kim TW, Yoshida Y, Yokoya K, Sasaki T (1999) An ultrastructural study of the effects of bisphosphonate administration of osteoclastic bone resorption during relapse of experimentally moved rat molars. Am J Orthod Dentofacial Orthop 115:645–53PubMedCrossRef Kim TW, Yoshida Y, Yokoya K, Sasaki T (1999) An ultrastructural study of the effects of bisphosphonate administration of osteoclastic bone resorption during relapse of experimentally moved rat molars. Am J Orthod Dentofacial Orthop 115:645–53PubMedCrossRef
11.
go back to reference Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H (2004) Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res 83:920–5PubMedCrossRef Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H (2004) Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res 83:920–5PubMedCrossRef
12.
go back to reference Han G, Chen Y, Hou J, Liu C, Chen C, Zhuang J, Meng W (2010) Effects of simvastatin on relapse and remodeling of periodontal tissues after tooth movement in rats. Am J Orthod Dentofacial Orthop 138:550.e1–7, discussion 550-1CrossRef Han G, Chen Y, Hou J, Liu C, Chen C, Zhuang J, Meng W (2010) Effects of simvastatin on relapse and remodeling of periodontal tissues after tooth movement in rats. Am J Orthod Dentofacial Orthop 138:550.e1–7, discussion 550-1CrossRef
13.
go back to reference Hassan AH, Al-Jubail A, Al-Fraidi AA (2010) Bone inductive proteins to enhance postorthodontic stability. Angle Orthod 80:1051–60PubMedCrossRef Hassan AH, Al-Jubail A, Al-Fraidi AA (2010) Bone inductive proteins to enhance postorthodontic stability. Angle Orthod 80:1051–60PubMedCrossRef
14.
go back to reference Stewart DR, Sherick P, Kramer S, Breining P (2005) Use of relaxin in orthodontics. Ann N Y Acad Sci 1041:379–87PubMedCrossRef Stewart DR, Sherick P, Kramer S, Breining P (2005) Use of relaxin in orthodontics. Ann N Y Acad Sci 1041:379–87PubMedCrossRef
15.
go back to reference Takano M, Yamaguchi M, Nakajima R, Fujita S, Kojima T, Kasai K (2009) Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthod Craniofac Res 12:282–8PubMedCrossRef Takano M, Yamaguchi M, Nakajima R, Fujita S, Kojima T, Kasai K (2009) Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthod Craniofac Res 12:282–8PubMedCrossRef
16.
go back to reference Henneman S, Bildt MM, CeGroot J, Kuijpers-Jagtman AM, Von den Hoff JW (2008) Relaxin stimulates MMP-2 and α-smooth muscle actin expression by human periodontal ligament cells. Arch Oral Biol 53:161–7PubMedCrossRef Henneman S, Bildt MM, CeGroot J, Kuijpers-Jagtman AM, Von den Hoff JW (2008) Relaxin stimulates MMP-2 and α-smooth muscle actin expression by human periodontal ligament cells. Arch Oral Biol 53:161–7PubMedCrossRef
17.
go back to reference Kim SJ, Moon SU, Kang SG, Park YG (2009) Effects of low-level laser therapy after corticision on tooth movement and paradental remodeling. Lasers Surg Med 41:524–33PubMedCrossRef Kim SJ, Moon SU, Kang SG, Park YG (2009) Effects of low-level laser therapy after corticision on tooth movement and paradental remodeling. Lasers Surg Med 41:524–33PubMedCrossRef
18.
go back to reference Aihara N, Yamaguchi M, Kasai K (2006) Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci 21:24–33PubMedCrossRef Aihara N, Yamaguchi M, Kasai K (2006) Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci 21:24–33PubMedCrossRef
19.
go back to reference Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K (2008) Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 11:143–155PubMedCrossRef Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K (2008) Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 11:143–155PubMedCrossRef
20.
go back to reference Yamaguchi M, Fujita S, Yoshida T, Oikawa K, Utsunomiya T, Yamamoto H, Kasai K (2007) Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF and c-fms. Orthod Waves 66:139–48CrossRef Yamaguchi M, Fujita S, Yoshida T, Oikawa K, Utsunomiya T, Yamamoto H, Kasai K (2007) Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF and c-fms. Orthod Waves 66:139–48CrossRef
21.
go back to reference Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, Kasai K (2010) Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod 32:131–9PubMedCrossRef Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, Kasai K (2010) Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod 32:131–9PubMedCrossRef
22.
go back to reference da Silva Sousa MV, Scanavini AS, Sannomiya EK, Velasco LG, Angelieri F (2011) Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg 29:191–6CrossRef da Silva Sousa MV, Scanavini AS, Sannomiya EK, Velasco LG, Angelieri F (2011) Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg 29:191–6CrossRef
23.
go back to reference Zhang MM, Feng DF, Shao P, Sun TT, Wang L, Yang BF (2008) Nifedipine regulated periodontal ligament remodeling: an experimental study in rats. Acta Odontol Scand 66:327–33PubMedCrossRef Zhang MM, Feng DF, Shao P, Sun TT, Wang L, Yang BF (2008) Nifedipine regulated periodontal ligament remodeling: an experimental study in rats. Acta Odontol Scand 66:327–33PubMedCrossRef
24.
go back to reference Conlan MJ, Rapley JW, Cob CM (1996) Biostimulation of wound healing by low-energy laser irradiation: a review. J Clin Periodontol 23:492–496PubMedCrossRef Conlan MJ, Rapley JW, Cob CM (1996) Biostimulation of wound healing by low-energy laser irradiation: a review. J Clin Periodontol 23:492–496PubMedCrossRef
25.
go back to reference Mafra de Lima F, Villaverde AB, Albertini R, Correa JC, Carvalho RLP, Munin E, Araujo T, Silva JA, Aimbire F (2011) Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med 43:410–420PubMedCrossRef Mafra de Lima F, Villaverde AB, Albertini R, Correa JC, Carvalho RLP, Munin E, Araujo T, Silva JA, Aimbire F (2011) Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med 43:410–420PubMedCrossRef
26.
go back to reference Gavish L, Perez L, Gertz SD (2006) Low-Level Laser Irradiation modulates matrix metalloproteinase activity and gene expression in procine aortic smooth muscle cells. Lasers Surg Med 38:779–86PubMedCrossRef Gavish L, Perez L, Gertz SD (2006) Low-Level Laser Irradiation modulates matrix metalloproteinase activity and gene expression in procine aortic smooth muscle cells. Lasers Surg Med 38:779–86PubMedCrossRef
27.
go back to reference Kwak C, Kim SS, Park SH, Son WS, Kim YD, Jun ES, Park MH (2008) The expression of MMP-1, -8, and -13 mRNA in the periodontal ligament of rats during tooth movement with cortical punching. Korean J Orthod 38:187–201CrossRef Kwak C, Kim SS, Park SH, Son WS, Kim YD, Jun ES, Park MH (2008) The expression of MMP-1, -8, and -13 mRNA in the periodontal ligament of rats during tooth movement with cortical punching. Korean J Orthod 38:187–201CrossRef
28.
go back to reference Kim SJ, Paek JH, Park KH, Kang SG, Park YG (2010) Laser-aided supracrestal circumferential fiberotomy and Low-level laser therapy effects on relapse of rotated teeth in beagles. Angle Orthod 80:385–90PubMedCrossRef Kim SJ, Paek JH, Park KH, Kang SG, Park YG (2010) Laser-aided supracrestal circumferential fiberotomy and Low-level laser therapy effects on relapse of rotated teeth in beagles. Angle Orthod 80:385–90PubMedCrossRef
29.
go back to reference Ren Y, Maltha JC, Kuijpers-Jagtman AM (2004) The rat as a model for orthodontic tooth movement–a critical review and a proposed solution. Eur J Orthod 26:483–90PubMedCrossRef Ren Y, Maltha JC, Kuijpers-Jagtman AM (2004) The rat as a model for orthodontic tooth movement–a critical review and a proposed solution. Eur J Orthod 26:483–90PubMedCrossRef
30.
go back to reference Garcia VG, Alcantara de Lima M, Okamoto T, Milanezi LA, Gualberto EC, LA Junior F, Milanezi de Almeida J, Theodoro LH (2010) Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: hisotological study in rats. Lasers Med Sci 25:221–228PubMedCrossRef Garcia VG, Alcantara de Lima M, Okamoto T, Milanezi LA, Gualberto EC, LA Junior F, Milanezi de Almeida J, Theodoro LH (2010) Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: hisotological study in rats. Lasers Med Sci 25:221–228PubMedCrossRef
31.
go back to reference Sadowsky C, Schneider BJ, BeGole EA, Tahir E (1994) Long-term stability after orthodontic treatment: nonextraction with prolonged retention. Am J Orthod Dentofacial Orthop 106:243–9PubMedCrossRef Sadowsky C, Schneider BJ, BeGole EA, Tahir E (1994) Long-term stability after orthodontic treatment: nonextraction with prolonged retention. Am J Orthod Dentofacial Orthop 106:243–9PubMedCrossRef
32.
go back to reference Bildt MM, Bloemen M, Kuijpers-Jagtman AM, Von den Hoff JW (2009) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement. Eur J Orthod 31:529–535PubMedCrossRef Bildt MM, Bloemen M, Kuijpers-Jagtman AM, Von den Hoff JW (2009) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement. Eur J Orthod 31:529–535PubMedCrossRef
33.
go back to reference Garlet TP, Coelho U, Silva JS, Garlet GP (2007) Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115:355–362PubMedCrossRef Garlet TP, Coelho U, Silva JS, Garlet GP (2007) Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115:355–362PubMedCrossRef
34.
go back to reference Sobue T, Hakeda Y, Kobayashi Y, Yamashita K, Aoki T, Kumegawa M, Noguchi T, Hayakawa T (2001) Tissue inhibitor of metalloprotinases 1 and 2 directly stimulate the bone-resorbing activity of isolated mature osteoclasts. J Bone Miner Res 16:2205–14PubMedCrossRef Sobue T, Hakeda Y, Kobayashi Y, Yamashita K, Aoki T, Kumegawa M, Noguchi T, Hayakawa T (2001) Tissue inhibitor of metalloprotinases 1 and 2 directly stimulate the bone-resorbing activity of isolated mature osteoclasts. J Bone Miner Res 16:2205–14PubMedCrossRef
35.
go back to reference Geoffroy V, Marty-Morieux C, Le Goupil N, Clement-Lacroix P, Terraz C, Frain M, Roux S, Rossert J, de Vernejoul MC (2004) In vivo inhibition of osteoblastic metalloproteinases leads to increased trabecular bone mass. J Bone Miner Res 19:811–22PubMedCrossRef Geoffroy V, Marty-Morieux C, Le Goupil N, Clement-Lacroix P, Terraz C, Frain M, Roux S, Rossert J, de Vernejoul MC (2004) In vivo inhibition of osteoblastic metalloproteinases leads to increased trabecular bone mass. J Bone Miner Res 19:811–22PubMedCrossRef
36.
go back to reference Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with HE-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol 27:219–23CrossRef Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with HE-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol 27:219–23CrossRef
37.
go back to reference Kim YD, Kim SS, Kim SJ, Kwon DW, Jeon ES, Son WS (2010) Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats. Lasers Med Sci 25:25–31PubMedCrossRef Kim YD, Kim SS, Kim SJ, Kwon DW, Jeon ES, Son WS (2010) Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats. Lasers Med Sci 25:25–31PubMedCrossRef
Metadata
Title
Effects of low-intensity laser therapy on periodontal tissue remodeling during relapse and retention of orthodontically moved teeth
Authors
Su-Jung Kim
Yoon-Goo Kang
Jong-Hyun Park
Eun-Cheol Kim
Young-Guk Park
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 1/2013
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1146-8

Other articles of this Issue 1/2013

Lasers in Medical Science 1/2013 Go to the issue