Skip to main content
Top
Published in: Lasers in Medical Science 3/2013

01-05-2013 | Original Article

Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-β1 in skeletal muscle during the repair process

Authors: Li Luo, Zhongwen Sun, Lin Zhang, Xiaoning Li, Yu Dong, Timon Cheng-Yi Liu

Published in: Lasers in Medical Science | Issue 3/2013

Login to get access

Abstract

The aim of the present study was to determine the effects of low-level laser therapy (LLLT) on the homeostasis of reactive oxygen species (ROS) and expression of IGF-1 and TGF-β1 in the gastrocnemius muscles of rats following contusion. Muscle regeneration involves cell proliferation, migration, and differentiation and is regulated by growth factors. A growing body of evidence suggests that LLLT promotes skeletal muscle regeneration and accelerates tissue repair. Adult male Sprague-Dawley rats (n = 96) were randomly divided into three groups: control group (no lesion, untreated, n = 6), contusion group (n = 48), and contusion-plus-LLLT group (n = 42). Gallium aluminum arsenide (GaAlAs) laser irradiation (635 nm; beam spot, 0.4 cm2; output power, 7 mW; power density, 17.5 mW/cm2; 20 min) was administered to the gastrocnemius contusion for 20 min daily for 10 days. Muscle remodeling was evaluated at 0 h and 1, 2, 3, 7, 14, 21, and 28 days after injury. Hematoxylin and eosin and Van Gieson staining were used to evaluate regeneration and fibrosis; muscle superoxide dismutase (SOD) and malondialdehyde (MDA) were detected via biochemical methods; expression of transforming growth factor beta-1 (TGF-β1) and insulin-like growth factor-1 (IGF-1) were investigated via immunohistochemistry. The results showed that LLLT markedly promoted the regeneration of muscle and reduced scar formation. LLLT also significantly enhanced muscle SOD activity and significantly decreased muscle MDA levels 1, 2, and 3 days after injury. LLLT increased the expression of IGF-1 2, 3, and 7 days after injury and decreased the expression of IGF-1 21 and 28 days after injury. LLLT decreased the expression of TGF-β1 3 and 28 days after injury but increased expression at 7 and 14 days after injury. Our study showed that LLLT could modulate the homeostasis of ROS and of the growth factors IGF-1 and TGF-β1, which are known to play important roles in the repair process. This may constitute a new preventive approach to muscular fibrosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, Gonzalez-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300. doi:10.1002/lsm.20225 PubMedCrossRef Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, Gonzalez-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300. doi:10.​1002/​lsm.​20225 PubMedCrossRef
2.
go back to reference Rizzi CF, Mauriz JL, Freitas Correa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, Gonzalez-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38(7):704–713. doi:10.1002/lsm.20371 PubMedCrossRef Rizzi CF, Mauriz JL, Freitas Correa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, Gonzalez-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38(7):704–713. doi:10.​1002/​lsm.​20371 PubMedCrossRef
3.
go back to reference Nussbaum EL (1999) Low-intensity laser therapy for benign fibrotic lumps in the breast following reduction mammaplasty. Phys Ther 79(7):691–698PubMed Nussbaum EL (1999) Low-intensity laser therapy for benign fibrotic lumps in the breast following reduction mammaplasty. Phys Ther 79(7):691–698PubMed
4.
go back to reference Katz TM, Glaich AS, Goldberg LH, Friedman PM (2010) 595-nm long pulsed dye laser and 1450-nm diode laser in combination with intralesional triamcinolone/5-fluorouracil for hypertrophic scarring following a phenol peel. J Am Acad Dermatol 62(6):1045–1049. doi:10.1016/j.jaad.2009.06.054 PubMedCrossRef Katz TM, Glaich AS, Goldberg LH, Friedman PM (2010) 595-nm long pulsed dye laser and 1450-nm diode laser in combination with intralesional triamcinolone/5-fluorouracil for hypertrophic scarring following a phenol peel. J Am Acad Dermatol 62(6):1045–1049. doi:10.​1016/​j.​jaad.​2009.​06.​054 PubMedCrossRef
6.
go back to reference Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A(5):822–832PubMed Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A(5):822–832PubMed
7.
go back to reference Cuzzocrea S, Thiemermann C, Salvemini D (2004) Potential therapeutic effect of antioxidant therapy in shock and inflammation. Curr Med Chem 11(9):1147–1162PubMedCrossRef Cuzzocrea S, Thiemermann C, Salvemini D (2004) Potential therapeutic effect of antioxidant therapy in shock and inflammation. Curr Med Chem 11(9):1147–1162PubMedCrossRef
8.
go back to reference Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D'Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9):863–875. doi:10.1038/ncb2090 PubMedCrossRef Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D'Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9):863–875. doi:10.​1038/​ncb2090 PubMedCrossRef
9.
go back to reference De Minicis S, Seki E, Paik YH, Osterreicher CH, Kodama Y, Kluwe J, Torozzi L, Miyai K, Benedetti A, Schwabe RF, Brenner DA (2010) Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology 52(4):1420–1430. doi:10.1002/hep.23804 PubMedCrossRef De Minicis S, Seki E, Paik YH, Osterreicher CH, Kodama Y, Kluwe J, Torozzi L, Miyai K, Benedetti A, Schwabe RF, Brenner DA (2010) Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology 52(4):1420–1430. doi:10.​1002/​hep.​23804 PubMedCrossRef
10.
go back to reference Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, Page P, Kennedy CR, Burns KD, Touyz RM, Hebert RL (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–F1358. doi:10.1152/ajprenal.00028.2010 PubMedCrossRef Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, Page P, Kennedy CR, Burns KD, Touyz RM, Hebert RL (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–F1358. doi:10.​1152/​ajprenal.​00028.​2010 PubMedCrossRef
14.
go back to reference Urish KL, Vella JB, Okada M, Deasy BM, Tobita K, Keller BB, Cao B, Piganelli JD, Huard J (2009) Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell 20(1):509–520. doi:10.1091/mbc.E08-03-0274 PubMedCrossRef Urish KL, Vella JB, Okada M, Deasy BM, Tobita K, Keller BB, Cao B, Piganelli JD, Huard J (2009) Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell 20(1):509–520. doi:10.​1091/​mbc.​E08-03-0274 PubMedCrossRef
16.
18.
go back to reference Pelosi L, Giacinti C, Nardis C, Borsellino G, Rizzuto E, Nicoletti C, Wannenes F, Battistini L, Rosenthal N, Molinaro M, Musaro A (2007) Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J 21(7):1393–1402. doi:10.1096/fj.06-7690com PubMedCrossRef Pelosi L, Giacinti C, Nardis C, Borsellino G, Rizzuto E, Nicoletti C, Wannenes F, Battistini L, Rosenthal N, Molinaro M, Musaro A (2007) Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J 21(7):1393–1402. doi:10.​1096/​fj.​06-7690com PubMedCrossRef
19.
go back to reference Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224(1):7–16. doi:10.1002/jcp.22127 PubMed Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224(1):7–16. doi:10.​1002/​jcp.​22127 PubMed
20.
go back to reference Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164(3):1007–1019PubMedCrossRef Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164(3):1007–1019PubMedCrossRef
21.
go back to reference Cencetti FBC, Nincheri P, Donati C, Bruni P (2010) Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol Biol Cell 21(6):1111–1124PubMedCrossRef Cencetti FBC, Nincheri P, Donati C, Bruni P (2010) Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol Biol Cell 21(6):1111–1124PubMedCrossRef
22.
go back to reference Minamoto VB, Grazziano CR, Salvini TF (1999) Effect of single and periodic contusion on the rat soleus muscle at different stages of regeneration. Anat Rec 254(2):281–287. doi:10.1002/(SICI)1097-0185(19990201)254:2<281::AID-AR14>3.0.CO;2-ZPubMedCrossRef Minamoto VB, Grazziano CR, Salvini TF (1999) Effect of single and periodic contusion on the rat soleus muscle at different stages of regeneration. Anat Rec 254(2):281–287. doi:10.1002/(SICI)1097-0185(19990201)254:2<281::AID-AR14>3.0.CO;2-ZPubMedCrossRef
23.
go back to reference Kami K, Masuhara M, Kashiba H, Kawai Y, Noguchi K, Senba E (1993) Changes of vinculin and extracellular matrix components following blunt trauma to rat skeletal muscle. Med Sci Sports Exerc 25(7):832–840PubMedCrossRef Kami K, Masuhara M, Kashiba H, Kawai Y, Noguchi K, Senba E (1993) Changes of vinculin and extracellular matrix components following blunt trauma to rat skeletal muscle. Med Sci Sports Exerc 25(7):832–840PubMedCrossRef
24.
go back to reference Crisco JJ, Jokl P, Heinen GT, Connell MD, Panjabi MM (1994) A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med 22(5):702–710PubMedCrossRef Crisco JJ, Jokl P, Heinen GT, Connell MD, Panjabi MM (1994) A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med 22(5):702–710PubMedCrossRef
25.
go back to reference Beiner JM, Jokl P, Cholewicki J, Panjabi MM (1999) The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 27(1):2–9PubMed Beiner JM, Jokl P, Cholewicki J, Panjabi MM (1999) The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 27(1):2–9PubMed
28.
go back to reference Hurme T, Kalimo H (1992) Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 24(2):197–205PubMed Hurme T, Kalimo H (1992) Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 24(2):197–205PubMed
31.
go back to reference Grounds MD (1999) Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol 12(5):535–543PubMedCrossRef Grounds MD (1999) Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol 12(5):535–543PubMedCrossRef
33.
go back to reference Karu T (1998) The science of low-power laser therapy. Gordon and Breach Science Publishers, Amsterdam Karu T (1998) The science of low-power laser therapy. Gordon and Breach Science Publishers, Amsterdam
34.
go back to reference Choi JE, Lee SS, Sunde DA, Huizar I, Haugk KL, Thannickal VJ, Vittal R, Plymate SR, Schnapp LM (2009) Insulin-like growth factor-I receptor blockade improves outcome in mouse model of lung injury. Am J Respir Crit Care Med 179(3):212–219. doi:10.1164/rccm.200802-228OC PubMedCrossRef Choi JE, Lee SS, Sunde DA, Huizar I, Haugk KL, Thannickal VJ, Vittal R, Plymate SR, Schnapp LM (2009) Insulin-like growth factor-I receptor blockade improves outcome in mouse model of lung injury. Am J Respir Crit Care Med 179(3):212–219. doi:10.​1164/​rccm.​200802-228OC PubMedCrossRef
36.
go back to reference Shen WLY, Zhu J, Schwendener R, Huard J (2008) Interaction between macrophages, TGF-beta1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury. J Cell Physiol 214(2):405–412PubMedCrossRef Shen WLY, Zhu J, Schwendener R, Huard J (2008) Interaction between macrophages, TGF-beta1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury. J Cell Physiol 214(2):405–412PubMedCrossRef
38.
go back to reference Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-alpha and TGF-beta in skeletal muscle during the repair process. Lasers Med Sci 26(3):335–340. doi:10.1007/s10103-010-0850-5 PubMedCrossRef Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, Bussadori SK, Fernandes KP (2011) Effects of low-level laser therapy on expression of TNF-alpha and TGF-beta in skeletal muscle during the repair process. Lasers Med Sci 26(3):335–340. doi:10.​1007/​s10103-010-0850-5 PubMedCrossRef
Metadata
Title
Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-β1 in skeletal muscle during the repair process
Authors
Li Luo
Zhongwen Sun
Lin Zhang
Xiaoning Li
Yu Dong
Timon Cheng-Yi Liu
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 3/2013
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1133-0

Other articles of this Issue 3/2013

Lasers in Medical Science 3/2013 Go to the issue