Skip to main content
Top
Published in: Lasers in Medical Science 3/2013

01-05-2013 | Original Article

Effect of 635 nm irradiation on high glucose-boosted inflammatory responses in LPS-induced MC3T3-E1 cells

Authors: HyukIl Kwon, WonBong Lim, JiSun Kim, SangMi Jeon, SangWoo Kim, Sandeep Karna, HyunRok Cha, OkJoon Kim, HongRan Choi

Published in: Lasers in Medical Science | Issue 3/2013

Login to get access

Abstract

Hyperglycemia occurs in patients with poorly controlled diabetes mellitus and contributes to bone resorption and increased susceptibility to bacterial infections. Hyperglycemia can incite low-grade inflammation that can contribute to the resorption of bone, especially the periodontal bone. The increased susceptibility to periodontal infections can contribute to bone resorption through the activation of osteoclasts. In this study, the osteoblastic, clonal cell line, MC3T3-E1, was used in an in vitro model of hyperglycemia and lipopolysaccharide-induced reactive oxygen species generation to determine the potential anti-inflammatory effect of 635 nm light-emitting diode (LED) irradiation or whether 635 nm LED irradiation can be a potential anti-inflammatory treatment. LED irradiation of MC3T3-E1 cells stimulated with lipopolysaccharide in a high glucose-containing medium decreased the level of cyclooxygenase gene and protein expression and reduced the level of prostaglandin E2 expression by decreasing the amount of reactive oxygen species generation. LED irradiation also inhibited the osteoclastogenesis in MC3T3-E1 cells by regulating the receptor activator of nuclear factor kappa-B ligand and osteoprotegerin. These findings reveal the mechanisms which are important in the pathogenesis of diabetic periodontitis and highlight the beneficial effects of 635 nm LED irradiation in reducing the adverse effects of diabetic periodontitis.
Literature
1.
go back to reference Mealey BL, Oates TW (2006) Diabetes mellitus and periodontal diseases. J Periodontol 77:1289–1303PubMedCrossRef Mealey BL, Oates TW (2006) Diabetes mellitus and periodontal diseases. J Periodontol 77:1289–1303PubMedCrossRef
2.
go back to reference Page RC (1991) The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 26:230–242PubMedCrossRef Page RC (1991) The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 26:230–242PubMedCrossRef
3.
go back to reference Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038PubMedCrossRef Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038PubMedCrossRef
4.
go back to reference Pyorala K, Laakso M, Uusitupa M (1987) Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 3:463–524PubMedCrossRef Pyorala K, Laakso M, Uusitupa M (1987) Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 3:463–524PubMedCrossRef
5.
go back to reference Lalla E, Lamster IB, Feit M, Huang L, Spessot A, Qu W, Kislinger T, Lu Y, Stern DM, Schmidt AM (2000) Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. J Clin Invest 105:1117–1124PubMedCrossRef Lalla E, Lamster IB, Feit M, Huang L, Spessot A, Qu W, Kislinger T, Lu Y, Stern DM, Schmidt AM (2000) Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. J Clin Invest 105:1117–1124PubMedCrossRef
6.
go back to reference Lalla E, Lamster IB, Schmidt AM (1998) Enhanced interaction of advanced glycation end products with their cellular receptor RAGE: implications for the pathogenesis of accelerated periodontal disease in diabetes. Ann Periodontol 3:13–19PubMedCrossRef Lalla E, Lamster IB, Schmidt AM (1998) Enhanced interaction of advanced glycation end products with their cellular receptor RAGE: implications for the pathogenesis of accelerated periodontal disease in diabetes. Ann Periodontol 3:13–19PubMedCrossRef
7.
go back to reference Nair SP, Meghji S, Wilson M, Reddi K, White P, Henderson B (1996) Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun 64:2371–2380PubMed Nair SP, Meghji S, Wilson M, Reddi K, White P, Henderson B (1996) Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun 64:2371–2380PubMed
8.
go back to reference Suda K, Udagawa N, Sato N, Takami M, Itoh K, Woo JT, Takahashi N, Nagai K (2004) Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J Immunol 172:2504–2510PubMed Suda K, Udagawa N, Sato N, Takami M, Itoh K, Woo JT, Takahashi N, Nagai K (2004) Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J Immunol 172:2504–2510PubMed
9.
go back to reference Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T, Higashio K (1998) Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun 246:337–341PubMedCrossRef Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T, Higashio K (1998) Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun 246:337–341PubMedCrossRef
10.
go back to reference Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40:726–733PubMedCrossRef Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40:726–733PubMedCrossRef
11.
go back to reference Li WT, Leu YC (2007) Effects of low level red-light irradiation on the proliferation of mesenchymal stem cells derived from rat bone marrow. Conf Proc IEEE Eng Med Biol Soc 2007:5830–5833PubMed Li WT, Leu YC (2007) Effects of low level red-light irradiation on the proliferation of mesenchymal stem cells derived from rat bone marrow. Conf Proc IEEE Eng Med Biol Soc 2007:5830–5833PubMed
12.
go back to reference Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39:614–621PubMedCrossRef Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39:614–621PubMedCrossRef
13.
go back to reference Lim W, Kim J-H, Gook E, Kim J, Ko Y, Kim I, Kwon H, Lim H, Jung B, Yang K, Choi N, Kim M, Kim S, Choi H, Kim O (2009) Inhibition of mitochondria-dependent apoptosis by 635-nm irradiation in sodium nitroprusside-treated SH-SY5Y cells. Free Radic Biol Med 47:850–857PubMedCrossRef Lim W, Kim J-H, Gook E, Kim J, Ko Y, Kim I, Kwon H, Lim H, Jung B, Yang K, Choi N, Kim M, Kim S, Choi H, Kim O (2009) Inhibition of mitochondria-dependent apoptosis by 635-nm irradiation in sodium nitroprusside-treated SH-SY5Y cells. Free Radic Biol Med 47:850–857PubMedCrossRef
14.
go back to reference Lim WB, Kim JS, Ko YJ, Kwon H, Kim SW, Min HK, Kim O, Choi HR, Kim OJ (2011) Effects of 635 nm light-emitting diode irradiation on angiogenesis in CoCl2-exposed HUVECs. Lasers Surg Med 43:344–352PubMedCrossRef Lim WB, Kim JS, Ko YJ, Kwon H, Kim SW, Min HK, Kim O, Choi HR, Kim OJ (2011) Effects of 635 nm light-emitting diode irradiation on angiogenesis in CoCl2-exposed HUVECs. Lasers Surg Med 43:344–352PubMedCrossRef
15.
go back to reference Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Hofling MA (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70:81–89PubMedCrossRef Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Hofling MA (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70:81–89PubMedCrossRef
16.
go back to reference Honmura A, Yanase M, Obata J, Haruki E (1992) Therapeutic effect of Ga–Al–As diode laser irradiation on experimentally induced inflammation in rats. Lasers Surg Med 12:441–449PubMedCrossRef Honmura A, Yanase M, Obata J, Haruki E (1992) Therapeutic effect of Ga–Al–As diode laser irradiation on experimentally induced inflammation in rats. Lasers Surg Med 12:441–449PubMedCrossRef
17.
go back to reference Davis W Jr, Ronai Z, Tew KD (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 296:1–6PubMed Davis W Jr, Ronai Z, Tew KD (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 296:1–6PubMed
18.
go back to reference Akyol UK, Gungormus M (2010) Effect of biostimulation on healing of bone defects in diabetic rats. Photomed Laser Surg 28:411–416PubMedCrossRef Akyol UK, Gungormus M (2010) Effect of biostimulation on healing of bone defects in diabetic rats. Photomed Laser Surg 28:411–416PubMedCrossRef
19.
go back to reference Bayat M, Abdi S, Javadieh F, Mohsenifar Z, Rashid MR (2009) The effects of low-level laser therapy on bone in diabetic and nondiabetic rats. Photomed Laser Surg 27:703–708PubMedCrossRef Bayat M, Abdi S, Javadieh F, Mohsenifar Z, Rashid MR (2009) The effects of low-level laser therapy on bone in diabetic and nondiabetic rats. Photomed Laser Surg 27:703–708PubMedCrossRef
20.
go back to reference Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28:21–28PubMedCrossRef Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28:21–28PubMedCrossRef
21.
go back to reference Secchiero P, Corallini F, Pandolfi A, Consoli A, Candido R, Fabris B, Celeghini C, Capitani S, Zauli G (2006) An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 169:2236–2244PubMedCrossRef Secchiero P, Corallini F, Pandolfi A, Consoli A, Candido R, Fabris B, Celeghini C, Capitani S, Zauli G (2006) An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 169:2236–2244PubMedCrossRef
22.
go back to reference Im JY, Kim D, Paik SG, Han PL (2006) Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Radic Biol Med 41:960–972PubMedCrossRef Im JY, Kim D, Paik SG, Han PL (2006) Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Radic Biol Med 41:960–972PubMedCrossRef
23.
go back to reference Murakami M, Kudo I (2004) Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res 43:3–35PubMedCrossRef Murakami M, Kudo I (2004) Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res 43:3–35PubMedCrossRef
24.
go back to reference Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner SL (2008) High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone 42:1122–1130PubMedCrossRef Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner SL (2008) High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone 42:1122–1130PubMedCrossRef
25.
go back to reference Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506PubMedCrossRef Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506PubMedCrossRef
26.
go back to reference Uno K, Nicholls SJ (2010) Biomarkers of inflammation and oxidative stress in atherosclerosis. Biomark Med 4:361–373PubMedCrossRef Uno K, Nicholls SJ (2010) Biomarkers of inflammation and oxidative stress in atherosclerosis. Biomark Med 4:361–373PubMedCrossRef
27.
go back to reference Goodson JM, Dewhirst FE, Brunetti A (1974) Prostaglandin E2 levels and human periodontal disease. Prostaglandins 6:81–85PubMed Goodson JM, Dewhirst FE, Brunetti A (1974) Prostaglandin E2 levels and human periodontal disease. Prostaglandins 6:81–85PubMed
28.
go back to reference Offenbacher S, Heasman PA, Collins JG (1993) Modulation of host PGE2 secretion as a determinant of periodontal disease expression. J Periodontol 64:432–444PubMed Offenbacher S, Heasman PA, Collins JG (1993) Modulation of host PGE2 secretion as a determinant of periodontal disease expression. J Periodontol 64:432–444PubMed
29.
go back to reference Klein DC, Raisz LG (1970) Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86:1436–1440PubMedCrossRef Klein DC, Raisz LG (1970) Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86:1436–1440PubMedCrossRef
Metadata
Title
Effect of 635 nm irradiation on high glucose-boosted inflammatory responses in LPS-induced MC3T3-E1 cells
Authors
HyukIl Kwon
WonBong Lim
JiSun Kim
SangMi Jeon
SangWoo Kim
Sandeep Karna
HyunRok Cha
OkJoon Kim
HongRan Choi
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 3/2013
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-012-1122-3

Other articles of this Issue 3/2013

Lasers in Medical Science 3/2013 Go to the issue