Skip to main content
Top
Published in: Neurological Sciences 9/2022

22-06-2022 | Epilepsy | Original Article

Global and local shape features of the hippocampus based on Laplace–Beltrami eigenvalues and eigenfunctions: a potential application in the lateralization of temporal lobe epilepsy

Authors: Rosita Shishegar, Ziba Gandomkar, Alireza Fallahi, Mohammad-Reza Nazem-Zadeh, Hamid Soltanian-Zadeh

Published in: Neurological Sciences | Issue 9/2022

Login to get access

Abstract

Using magnetic resonance (MR) images to evaluate changes in the shape of the hippocampus has been an active research topic. This paper presents a new shape analysis approach to quantify and visualize deformations of the hippocampus in epilepsy. The proposed method is based on Laplace–Beltrami (LB) eigenvalues and eigenfunctions as isometric invariant shape features, and thus, the procedure does not require any image registration. In addition to the LB-based shape features, total hippocampal volume and surface area are calculated using manually segmented images. Theses shape and volumetric descriptors are used to distinguish the patients with temporal lobe epilepsy (TLE) (N = 55) from healthy control subjects (N = 12, age = 32.2 ± 9.1, sex (M/F) = 6/6) and patients with right TLE (N = 26, age = 45.1 ± 11.0, sex (M/F) = 9/17) from left TLE (N = 29, age = 45.4 ± 11.9, sex (M/F) = 10/19). Experimental results illustrate the usefulness of the proposed approach for the diagnosis and lateralization of TLE with 93.0% and 86.4% of the cases, respectively. Moreover, the proposed method outperforms the volumetric analysis in terms of both sensitivity (94.9% vs. 88.1%) and specificity (83.3% vs. 50.0%) of the lateralization. The analysis of local hippocampal thickness variations suggests significant deformation in both ipsilateral and contralateral hippocampi of epileptic patients, while there were no differences between right and left hippocampi in controls. It is anticipated that the proposed method could be advantageous in the presurgical evaluation of patients with drug-resistant epilepsy; however, further validation of the method using a larger dataset is required.
Appendix
Available only for authorised users
Literature
1.
go back to reference Connor S, Ng V, McDonald C, Schulze K, Morgan K, Dazzan P, Murray RM (2004) A study of hippocampal shape anomaly in schizophrenia and in families multiply affected by schizophrenia or bipolar disorder. Neuroradiology 46:523–534CrossRef Connor S, Ng V, McDonald C, Schulze K, Morgan K, Dazzan P, Murray RM (2004) A study of hippocampal shape anomaly in schizophrenia and in families multiply affected by schizophrenia or bipolar disorder. Neuroradiology 46:523–534CrossRef
2.
go back to reference Dam AM (1980) Epilepsy and neuron loss in the hippocampus. Epilepsia 21:617–629CrossRef Dam AM (1980) Epilepsy and neuron loss in the hippocampus. Epilepsia 21:617–629CrossRef
3.
go back to reference Berkovic SF, Andermann F, Olivier A, Ethier R, Melanson D, Robitaille Y, Kuzniecky R, Peters T, Feindel W (1991) Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol 29:175–182CrossRef Berkovic SF, Andermann F, Olivier A, Ethier R, Melanson D, Robitaille Y, Kuzniecky R, Peters T, Feindel W (1991) Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol 29:175–182CrossRef
4.
go back to reference Anstey K, Maller J (2003) The role of volumetric MRI in understanding mild cognitive impairment and similar classifications. Aging Ment Health 7:238–250CrossRef Anstey K, Maller J (2003) The role of volumetric MRI in understanding mild cognitive impairment and similar classifications. Aging Ment Health 7:238–250CrossRef
5.
go back to reference Jber M, Jaar Mehvari Habibabadi J, Sharifpour R, Marzbani H, Hassanpour M, Seyfi M, Mohammadi Mobarakeh N, Keihani A, Hashemi-Fesharaki SS, Ay M, Nazem-Zadeh MR (2021) Temporal and extratemporal atrophic manifestation of temporal lobe epilepsy using voxel-based morphometry and corticometry: clinical application in lateralization of epileptogenic zone. Neurol Sci 42(8):3305–3325 Jber M, Jaar Mehvari Habibabadi J, Sharifpour R, Marzbani H, Hassanpour M, Seyfi M, Mohammadi Mobarakeh N, Keihani A, Hashemi-Fesharaki SS, Ay M, Nazem-Zadeh MR (2021) Temporal and extratemporal atrophic manifestation of temporal lobe epilepsy using voxel-based morphometry and corticometry: clinical application in lateralization of epileptogenic zone. Neurol Sci 42(8):3305–3325
6.
go back to reference Ng B, Toews M, Durrleman S, Shi Y (2014) Shape analysis for brain structures. In: Li S, Tavares JMRS (eds) Shape analysis in medical image analysis. Springer International Publishing, pp 3–49CrossRef Ng B, Toews M, Durrleman S, Shi Y (2014) Shape analysis for brain structures. In: Li S, Tavares JMRS (eds) Shape analysis in medical image analysis. Springer International Publishing, pp 3–49CrossRef
7.
go back to reference Levitt J, Westin C, Nestor P, Estepar SJ, R., Dickey, C., Voglmaier, M., Seidman, L., Kikinis, R., Jolesz, F., McCarley, R., Shenton, M., (2004) Shape of the caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder. Biol Psychiat 55:177–184CrossRef Levitt J, Westin C, Nestor P, Estepar SJ, R., Dickey, C., Voglmaier, M., Seidman, L., Kikinis, R., Jolesz, F., McCarley, R., Shenton, M., (2004) Shape of the caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder. Biol Psychiat 55:177–184CrossRef
8.
go back to reference Sommer I, Müller O, Domingues FS, Sander O, Weickert J, Lengauer T (2007) Moment invariants as shape recognition technique for comparing protein binding sites. Bioinformatics 23:3139–3146CrossRef Sommer I, Müller O, Domingues FS, Sander O, Weickert J, Lengauer T (2007) Moment invariants as shape recognition technique for comparing protein binding sites. Bioinformatics 23:3139–3146CrossRef
9.
go back to reference Esmaeilzadeh M, Soltanian-Zadeh H, Jafari-Khouzani K (2012) Mesial temporal lobe epilepsy lateralization using SPHARM-based features of hippocampus and SVM, Medical Imaging 2012: Image Processing, Proc. of SPIE 8314, 83144H-1 to 83144H-10. https://doi.org/10.1117/12.911740 Esmaeilzadeh M, Soltanian-Zadeh H, Jafari-Khouzani K (2012) Mesial temporal lobe epilepsy lateralization using SPHARM-based features of hippocampus and SVM, Medical Imaging 2012: Image Processing, Proc. of SPIE 8314, 83144H-1 to 83144H-10. https://​doi.​org/​10.​1117/​12.​911740
10.
go back to reference Gerig G, Styner M, Jones D, Weinberger D, Lieberman J (2001) Shape analysis of brain ventricles using SPHARM, Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA'01). https://doi.org/10.1109/MMBIA.2001.991731 Gerig G, Styner M, Jones D, Weinberger D, Lieberman J (2001) Shape analysis of brain ventricles using SPHARM, Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA'01). https://​doi.​org/​10.​1109/​MMBIA.​2001.​991731
11.
go back to reference Styner M, Oguz I, Xu S, Brechbühler C, Pantazis D, Levitt JJ, Shenton ME, Gerig G (2006) Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J (1071):242–250 Styner M, Oguz I, Xu S, Brechbühler C, Pantazis D, Levitt JJ, Shenton ME, Gerig G (2006) Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J (1071):242–250
12.
go back to reference Canales-Rodríguez EJ, Radua J, Pomarol-Clotet E, Sarró S, Alemán-Gómez Y, Iturria-Medina Y, Salvador R (2013) Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry. Neuroimage 72:214–226CrossRef Canales-Rodríguez EJ, Radua J, Pomarol-Clotet E, Sarró S, Alemán-Gómez Y, Iturria-Medina Y, Salvador R (2013) Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry. Neuroimage 72:214–226CrossRef
13.
go back to reference Schröder P, Sweldens W (1995) Spherical wavelets: efficiently representing functions on the sphere, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, pp. 161–172 Schröder P, Sweldens W (1995) Spherical wavelets: efficiently representing functions on the sphere, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, pp. 161–172
14.
go back to reference Bouix S, Pruessner JC, Louis Collins D, Siddiqi K (2005) Hippocampal shape analysis using medial surfaces. Neuroimage 25:1077–1089CrossRef Bouix S, Pruessner JC, Louis Collins D, Siddiqi K (2005) Hippocampal shape analysis using medial surfaces. Neuroimage 25:1077–1089CrossRef
15.
go back to reference Styner M, Lieberman J, Gerig G (2003) Boundary and medial shape analysis of the hippocampus in schizophrenia. In: Ellis R, Peters T (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. Springer, Berlin Heidelberg, pp 464–471CrossRef Styner M, Lieberman J, Gerig G (2003) Boundary and medial shape analysis of the hippocampus in schizophrenia. In: Ellis R, Peters T (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. Springer, Berlin Heidelberg, pp 464–471CrossRef
16.
go back to reference Thompson PM, Hayashi KM, de Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM (2004) Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22:1754–1766CrossRef Thompson PM, Hayashi KM, de Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM (2004) Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22:1754–1766CrossRef
17.
go back to reference Haller JW, Banerjee A, Christensen GE, Gado M, Joshi S, Miller MI, Sheline Y, Vannier MW, Csernansky JG (1997) Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. Radiology 202:504–510CrossRef Haller JW, Banerjee A, Christensen GE, Gado M, Joshi S, Miller MI, Sheline Y, Vannier MW, Csernansky JG (1997) Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. Radiology 202:504–510CrossRef
18.
go back to reference Das SR, Mechanic-Hamilton D, Korczykowski M, Pluta J, Glynn S, Avants BB, Detre JA, Yushkevich PA (2009) Structure specific analysis of the hippocampus in temporal lobe epilepsy. Hippocampus 19:517–525CrossRef Das SR, Mechanic-Hamilton D, Korczykowski M, Pluta J, Glynn S, Avants BB, Detre JA, Yushkevich PA (2009) Structure specific analysis of the hippocampus in temporal lobe epilepsy. Hippocampus 19:517–525CrossRef
19.
go back to reference Hogan RE, Bucholz RD, Joshi S (2003) Hippocampal deformation-based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia 44:800–806CrossRef Hogan RE, Bucholz RD, Joshi S (2003) Hippocampal deformation-based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia 44:800–806CrossRef
20.
go back to reference Hogan RE, Wang L, Bertrand ME, Willmore LJ, Bucholz RD, Nassif AS, Csernansky JG (2004) MRI-based high-dimensional hippocampal mapping in mesial temporal lobe epilepsy. Brain 127:1731–1740CrossRef Hogan RE, Wang L, Bertrand ME, Willmore LJ, Bucholz RD, Nassif AS, Csernansky JG (2004) MRI-based high-dimensional hippocampal mapping in mesial temporal lobe epilepsy. Brain 127:1731–1740CrossRef
22.
go back to reference Kodipaka S, Vemuri BC, Rangarajan A, Leonard CM, Schmallfuss I, Eisenschenk S (2007) Kernel fisher discriminant for shape-based classification in epilepsy. Med Image Anal 11:79–90CrossRef Kodipaka S, Vemuri BC, Rangarajan A, Leonard CM, Schmallfuss I, Eisenschenk S (2007) Kernel fisher discriminant for shape-based classification in epilepsy. Med Image Anal 11:79–90CrossRef
23.
go back to reference Hogan R, Wang L, Bertrand M, Willmore L, Bucholz R, Nassif A, Csernansky J (2006) Predictive value of hippocampal MR imaging-based high-dimensional mapping in mesial temporal epilepsy: preliminary findings. Am J Neuroradiol 27:2149–2154PubMedPubMedCentral Hogan R, Wang L, Bertrand M, Willmore L, Bucholz R, Nassif A, Csernansky J (2006) Predictive value of hippocampal MR imaging-based high-dimensional mapping in mesial temporal epilepsy: preliminary findings. Am J Neuroradiol 27:2149–2154PubMedPubMedCentral
24.
go back to reference Reuter M (2010) Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int J Comput Vision 89:287–308CrossRef Reuter M (2010) Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. Int J Comput Vision 89:287–308CrossRef
25.
go back to reference Reuter M, Wolter F-E, Peinecke N (2006) Laplace-Beltrami spectra as ‘Shape-DNA’of surfaces and solids. Comput Aided Des 38:342–366CrossRef Reuter M, Wolter F-E, Peinecke N (2006) Laplace-Beltrami spectra as ‘Shape-DNA’of surfaces and solids. Comput Aided Des 38:342–366CrossRef
26.
go back to reference Reuter M, Wolter F-E, Shenton M, Niethammer M (2009) Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Comput Aided Des 41:739–755CrossRef Reuter M, Wolter F-E, Shenton M, Niethammer M (2009) Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Comput Aided Des 41:739–755CrossRef
27.
go back to reference Rabiei H, Richard F, Coulon O, Lefèvre J (2019) Estimating the complexity of the cerebral cortex folding with a local shape spectral analysis. Springer, Vertex-Frequency Analysis of Graph SignalsCrossRef Rabiei H, Richard F, Coulon O, Lefèvre J (2019) Estimating the complexity of the cerebral cortex folding with a local shape spectral analysis. Springer, Vertex-Frequency Analysis of Graph SignalsCrossRef
28.
go back to reference Shishegar R, Manton JH, Walker DW, Britto JM, Johnston LA (2015) Quantifying gyrification using Laplace Beltrami eigenfunction level-sets. In: Proceedings of the 12th IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1272–1275. https://doi.org/10.1109/ISBI.2015.7164106 Shishegar R, Manton JH, Walker DW, Britto JM, Johnston LA (2015) Quantifying gyrification using Laplace Beltrami eigenfunction level-sets. In: Proceedings of the 12th IEEE International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1272–1275. https://​doi.​org/​10.​1109/​ISBI.​2015.​7164106
29.
go back to reference Shishegar R, Pizzagalli F, Georgiou-Karistianis N, Egan GF, Jahanshad N, Johnston LA (2021) A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets. Neuroimage 229:117751CrossRef Shishegar R, Pizzagalli F, Georgiou-Karistianis N, Egan GF, Jahanshad N, Johnston LA (2021) A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets. Neuroimage 229:117751CrossRef
30.
go back to reference Lyu I, Kim SH, Woodward ND, Styner MA, Landman BA (2017) TRACE: a topological graph representation for automatic sulcal curve extraction. IEEE Trans Med Imaging 37:1653–1663CrossRef Lyu I, Kim SH, Woodward ND, Styner MA, Landman BA (2017) TRACE: a topological graph representation for automatic sulcal curve extraction. IEEE Trans Med Imaging 37:1653–1663CrossRef
31.
go back to reference Shishegar R, Tolcos M, Walker DW, Johnston LA (2016) Sulcal curve extraction using Laplace Beltrami eigenfunction level sets. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 4043–4046 Shishegar R, Tolcos M, Walker DW, Johnston LA (2016) Sulcal curve extraction using Laplace Beltrami eigenfunction level sets. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 4043–4046
32.
go back to reference Hu J, Hamidian H, Zhong Z, Hua J (2017) Visualizing shape deformations with variation of geometric spectrum. IEEE Trans Vis Comput Graph 23(1):721–730CrossRef Hu J, Hamidian H, Zhong Z, Hua J (2017) Visualizing shape deformations with variation of geometric spectrum. IEEE Trans Vis Comput Graph 23(1):721–730CrossRef
33.
go back to reference Shishegar R, Soltanian-Zadeh H, Moghadasi SR (2011) Hippocampal shape analysis in epilepsy using Laplace-Beltrami spectrum, Electrical Engineering (ICEE), 2011 19th Iranian Conference on. IEEE, pp. 1–5 Shishegar R, Soltanian-Zadeh H, Moghadasi SR (2011) Hippocampal shape analysis in epilepsy using Laplace-Beltrami spectrum, Electrical Engineering (ICEE), 2011 19th Iranian Conference on. IEEE, pp. 1–5
34.
go back to reference Shishegar R, Soltanian-Zadeh H, Tehranipour F (2012) Statistical shape analysis of hippocampus in temporal lobe epilepsy based on Laplace-Beltrami eigenfunction levelsets, Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI International Symposium on. IEEE, pp. 364–369 Shishegar R, Soltanian-Zadeh H, Tehranipour F (2012) Statistical shape analysis of hippocampus in temporal lobe epilepsy based on Laplace-Beltrami eigenfunction levelsets, Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI International Symposium on. IEEE, pp. 364–369
35.
go back to reference Duvernoy HM (2005) The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Springer VerlagCrossRef Duvernoy HM (2005) The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Springer VerlagCrossRef
36.
go back to reference Jafari-Khouzani K, Elisevich KV, Patel S, Soltanian-Zadeh H (2011) Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques. Neuroinformatics 9:335–346CrossRef Jafari-Khouzani K, Elisevich KV, Patel S, Soltanian-Zadeh H (2011) Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques. Neuroinformatics 9:335–346CrossRef
37.
go back to reference Biasotti S, De Floriani L, Falcidieno B, Frosini P, Giorgi D, Landi C, Papaleo L, Spagnuolo M (2008) Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys (CSUR) 40:12CrossRef Biasotti S, De Floriani L, Falcidieno B, Frosini P, Giorgi D, Landi C, Papaleo L, Spagnuolo M (2008) Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys (CSUR) 40:12CrossRef
38.
go back to reference Good P (2005) Permutation, parametric and bootstrap tests of hypotheses. Springer Good P (2005) Permutation, parametric and bootstrap tests of hypotheses. Springer
39.
go back to reference Balasko B, Abonyi J, Feil B (2005) Fuzzy clustering and data analysis toolbox. University of Veszprem, Veszprem, Department of Process Engineering Balasko B, Abonyi J, Feil B (2005) Fuzzy clustering and data analysis toolbox. University of Veszprem, Veszprem, Department of Process Engineering
40.
go back to reference Edelsbrunner H, Harer J, Zomorodian A (2003) Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discret Comput Geom 30:87–107CrossRef Edelsbrunner H, Harer J, Zomorodian A (2003) Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discret Comput Geom 30:87–107CrossRef
41.
go back to reference Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. Medical Imaging, IEEE Transactions on 21:1151–1166CrossRef Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. Medical Imaging, IEEE Transactions on 21:1151–1166CrossRef
42.
go back to reference Halkidi M, Batistakis Y, Vazirgiannis M (2002) Clustering validity checking methods: part II. ACM SIGMOD Rec 31:19–27CrossRef Halkidi M, Batistakis Y, Vazirgiannis M (2002) Clustering validity checking methods: part II. ACM SIGMOD Rec 31:19–27CrossRef
43.
go back to reference Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841CrossRef Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841CrossRef
44.
go back to reference Kanungo T, Mount D (2004) An efficient k-means clustering algorithm: analysis and implantation. IEEE Trans, PAMI 24:881–892CrossRef Kanungo T, Mount D (2004) An efficient k-means clustering algorithm: analysis and implantation. IEEE Trans, PAMI 24:881–892CrossRef
45.
Metadata
Title
Global and local shape features of the hippocampus based on Laplace–Beltrami eigenvalues and eigenfunctions: a potential application in the lateralization of temporal lobe epilepsy
Authors
Rosita Shishegar
Ziba Gandomkar
Alireza Fallahi
Mohammad-Reza Nazem-Zadeh
Hamid Soltanian-Zadeh
Publication date
22-06-2022
Publisher
Springer International Publishing
Keyword
Epilepsy
Published in
Neurological Sciences / Issue 9/2022
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-022-06204-7

Other articles of this Issue 9/2022

Neurological Sciences 9/2022 Go to the issue