Skip to main content
Top
Published in: Neurological Sciences 8/2022

18-05-2022 | Review Article

Space neuroscience: current understanding and future research

Authors: Bader H. Shirah, Bader M. Ibrahim, Yasser Aladdin, Jon Sen

Published in: Neurological Sciences | Issue 8/2022

Login to get access

Abstract

Space exploration is crucial for understanding our surroundings and establishing scientific concepts to explore, monitor, and save our planet’s environment. However, the response of the human nervous system in the environment of space poses numerous challenges. Brain complexity explains the vulnerability and intrinsic difficulty of recalibration after disturbance. Over the millennia, the brain has evolved to function at 1-G. Studying the brain and its physiology in different environments may shed light on multiple conditions encountered on Earth that are yet to be solved and dictate collaboration at international levels. The nervous system is affected by several stressors due to microgravity, radiation, isolation, disruption of circadian rhythm, impaired sleep dynamics, and hypercapnia associated with space travel. In this article, we aim to review several aspects related to the nervous system in weightless conditions, as well as the development and future of the emerging field of “space neuroscience.” Space neuroscience is a fascinating, embryonic field that requires significant development. The establishment of frameworks for the strategic development of space neuroscience is vital, as more research and collaboration are required to overcome these numerous and diverse challenges, minimize risks, and optimize crew performance during planetary operations.
Literature
1.
go back to reference Ruyters G, Stang K (2016) Space medicine 2025 – a vision: space medicine driving terrestrial medicine for the benefit of people on Earth. REACH 1:55–62CrossRef Ruyters G, Stang K (2016) Space medicine 2025 – a vision: space medicine driving terrestrial medicine for the benefit of people on Earth. REACH 1:55–62CrossRef
2.
go back to reference Hughes-Fulford M (2011) To infinity ... and beyond! Human spaceflight and life science. FASEB J 25(9):2858–2864CrossRef Hughes-Fulford M (2011) To infinity ... and beyond! Human spaceflight and life science. FASEB J 25(9):2858–2864CrossRef
3.
go back to reference Shirah BH, Ahmed MM (2021) Patents in space medicine: an immediate call for innovations in the field. REACH 23–24:100045CrossRef Shirah BH, Ahmed MM (2021) Patents in space medicine: an immediate call for innovations in the field. REACH 23–24:100045CrossRef
4.
go back to reference Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M (2012) Can I take a space flight? Considerations for doctors. BMJ 345:e8124CrossRef Grenon SM, Saary J, Gray G, Vanderploeg JM, Hughes-Fulford M (2012) Can I take a space flight? Considerations for doctors. BMJ 345:e8124CrossRef
5.
go back to reference Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375CrossRef Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375CrossRef
6.
go back to reference Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain structural plasticity with spaceflight. npj Microgravity 2(1):2CrossRef Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain structural plasticity with spaceflight. npj Microgravity 2(1):2CrossRef
7.
go back to reference Clément G, Reschke MF (2008) Space neuroscience: what is it? In: Clément G, Reschke MF (eds) Neuroscience in Space. Springer New York, New York, NY, pp 1–32CrossRef Clément G, Reschke MF (2008) Space neuroscience: what is it? In: Clément G, Reschke MF (eds) Neuroscience in Space. Springer New York, New York, NY, pp 1–32CrossRef
8.
go back to reference Clément G (2017) International roadmap for artificial gravity research. npj Microgravity 3(1):29CrossRef Clément G (2017) International roadmap for artificial gravity research. npj Microgravity 3(1):29CrossRef
9.
go back to reference Clément GR, Boyle RD, George KA et al (2020) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123(5):2037–2063CrossRef Clément GR, Boyle RD, George KA et al (2020) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123(5):2037–2063CrossRef
10.
go back to reference Roy-O’Reilly M, Mulavara A, Williams T (2021) A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. npj Microgravity 7(1):1–9CrossRef Roy-O’Reilly M, Mulavara A, Williams T (2021) A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. npj Microgravity 7(1):1–9CrossRef
11.
go back to reference Shinojima A, Kakeya I, Tada S (2018) Association of space flight with problems of the brain and eyes. JAMA Ophthalmol 136(9):1075CrossRef Shinojima A, Kakeya I, Tada S (2018) Association of space flight with problems of the brain and eyes. JAMA Ophthalmol 136(9):1075CrossRef
12.
go back to reference Zhang LF, Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev 98(1):59–87CrossRef Zhang LF, Hargens AR (2018) Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev 98(1):59–87CrossRef
13.
go back to reference Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G (2013) The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol 58(2):155–163CrossRef Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G (2013) The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol 58(2):155–163CrossRef
14.
go back to reference Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuro-Ophthalmol 36(1):85–91CrossRef Lee AG, Tarver WJ, Mader TH, Gibson CR, Hart SF, Otto CA (2016) Neuro-ophthalmology of space flight. J Neuro-Ophthalmol 36(1):85–91CrossRef
15.
go back to reference Lee AG, Mader TH, Gibson CR et al (2020) Spaceflight associated neuro-ocular syndrome (Sans) and the neuro-ophthalmologic effects of microgravity: a review and an update. npj Microgravity 6(1):7CrossRef Lee AG, Mader TH, Gibson CR et al (2020) Spaceflight associated neuro-ocular syndrome (Sans) and the neuro-ophthalmologic effects of microgravity: a review and an update. npj Microgravity 6(1):7CrossRef
16.
go back to reference Kramer LA, Hasan KM, Stenger MB et al (2020) Intracranial effects of microgravity: a prospective longitudinal mri study. Radiology 295(3):640–648CrossRef Kramer LA, Hasan KM, Stenger MB et al (2020) Intracranial effects of microgravity: a prospective longitudinal mri study. Radiology 295(3):640–648CrossRef
17.
go back to reference Van Ombergen A, Jillings S, Jeurissen B et al (2018) Brain tissue–volume changes in cosmonauts. N Engl J Med 379(17):1678–1680CrossRef Van Ombergen A, Jillings S, Jeurissen B et al (2018) Brain tissue–volume changes in cosmonauts. N Engl J Med 379(17):1678–1680CrossRef
18.
go back to reference Li K, Guo X, Jin Z et al (2015) Effect of simulated microgravity on human brain gray matter and white matter--evidence from mri. PLoS ONE 10(8):e0135835CrossRef Li K, Guo X, Jin Z et al (2015) Effect of simulated microgravity on human brain gray matter and white matter--evidence from mri. PLoS ONE 10(8):e0135835CrossRef
19.
go back to reference Hupfeld KE, McGregor HR, Koppelmans V et al (2022) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 32(4):755–769CrossRef Hupfeld KE, McGregor HR, Koppelmans V et al (2022) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 32(4):755–769CrossRef
20.
go back to reference Carriot J, Mackrous I, Cullen KE (2021) Challenges to the vestibular system in space: how the brain responds and adapts to microgravity. Front Neural Circuits 15:760313CrossRef Carriot J, Mackrous I, Cullen KE (2021) Challenges to the vestibular system in space: how the brain responds and adapts to microgravity. Front Neural Circuits 15:760313CrossRef
21.
go back to reference Garrett-Bakelman FE, Darshi M, Green SJ et al (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364(6436):eaau8650CrossRef Garrett-Bakelman FE, Darshi M, Green SJ et al (2019) The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364(6436):eaau8650CrossRef
22.
go back to reference Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579CrossRef Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579CrossRef
23.
go back to reference Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A (2016) Telomere length and the cancer-atherosclerosis trade-off. PLoS Genet 12(7):e1006144CrossRef Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A (2016) Telomere length and the cancer-atherosclerosis trade-off. PLoS Genet 12(7):e1006144CrossRef
24.
go back to reference Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRef Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRef
25.
go back to reference Luxton JJ, McKenna MJ, Taylor LE et al (2020) Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep 33(10):108435CrossRef Luxton JJ, McKenna MJ, Taylor LE et al (2020) Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep 33(10):108435CrossRef
26.
go back to reference Norsk P (2020) Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions. Acta Physiol 228(3):e13434CrossRef Norsk P (2020) Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions. Acta Physiol 228(3):e13434CrossRef
27.
go back to reference Cox JF, Tahvanainen KUO, Kuusela TA et al (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538(Pt 1):309–320CrossRef Cox JF, Tahvanainen KUO, Kuusela TA et al (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538(Pt 1):309–320CrossRef
29.
go back to reference Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A (2017) The impact of stress on body function: a review. EXCLI J 16:1057–1072PubMedPubMedCentral Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A (2017) The impact of stress on body function: a review. EXCLI J 16:1057–1072PubMedPubMedCentral
30.
go back to reference Acharya MM, Baulch JE, Klein PM et al (2019) New concerns for neurocognitive function during deep space exposures to chronic, low dose-rate, neutron radiation. eNeuro 6(4) ENEURO 0094-19.2019 Acharya MM, Baulch JE, Klein PM et al (2019) New concerns for neurocognitive function during deep space exposures to chronic, low dose-rate, neutron radiation. eNeuro 6(4) ENEURO 0094-19.2019
31.
go back to reference Goel N, Bale TL, Epperson CN et al (2014) Effects of sex and gender on adaptation to space: behavioral health. J Womens Health (Larchmt) 23(11):975–986CrossRef Goel N, Bale TL, Epperson CN et al (2014) Effects of sex and gender on adaptation to space: behavioral health. J Womens Health (Larchmt) 23(11):975–986CrossRef
32.
go back to reference Badran BW, Caulfield KA, Cox C et al (2020) Brain stimulation in zero gravity: transcranial magnetic stimulation (Tms) motor threshold decreases during zero gravity induced by parabolic flight. npj Microgravity 6(1):1–7CrossRef Badran BW, Caulfield KA, Cox C et al (2020) Brain stimulation in zero gravity: transcranial magnetic stimulation (Tms) motor threshold decreases during zero gravity induced by parabolic flight. npj Microgravity 6(1):1–7CrossRef
33.
go back to reference Larson MD, Behrends M (2015) Portable infrared pupillometry: a review. Anesth Analg 120(6):1242–1253CrossRef Larson MD, Behrends M (2015) Portable infrared pupillometry: a review. Anesth Analg 120(6):1242–1253CrossRef
34.
go back to reference Hall CA, Chilcott RP (2018) Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics (Basel) 8(1) Hall CA, Chilcott RP (2018) Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics (Basel) 8(1)
35.
go back to reference Lussier BL, Olson DM, Aiyagari V (2019) Automated pupillometry in neurocritical care: research and practice. Curr Neurol Neurosci Rep 19(10):71CrossRef Lussier BL, Olson DM, Aiyagari V (2019) Automated pupillometry in neurocritical care: research and practice. Curr Neurol Neurosci Rep 19(10):71CrossRef
36.
go back to reference Wang KK, Yang Z, Zhu T et al (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180CrossRef Wang KK, Yang Z, Zhu T et al (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180CrossRef
37.
go back to reference Mao XW, Nishiyama NC, Pecaut MJ et al (2016) Simulated microgravity and low-dose/low-dose-rate radiation induces oxidative damage in the mouse brain. Radiat Res 185(6):647–657CrossRef Mao XW, Nishiyama NC, Pecaut MJ et al (2016) Simulated microgravity and low-dose/low-dose-rate radiation induces oxidative damage in the mouse brain. Radiat Res 185(6):647–657CrossRef
38.
go back to reference Iosim S, MacKay M, Westover C, Mason CE (2019) Translating current biomedical therapies for long duration, deep space missions. Precis Clin Med 2(4):259–269CrossRef Iosim S, MacKay M, Westover C, Mason CE (2019) Translating current biomedical therapies for long duration, deep space missions. Precis Clin Med 2(4):259–269CrossRef
39.
go back to reference Löbrich M, Jeggo PA (2019) Hazards of human spaceflight. Science 364(6436):127–128CrossRef Löbrich M, Jeggo PA (2019) Hazards of human spaceflight. Science 364(6436):127–128CrossRef
40.
go back to reference Watenpaugh DE (2016) Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol (1985) 120(8):904–914CrossRef Watenpaugh DE (2016) Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol (1985) 120(8):904–914CrossRef
Metadata
Title
Space neuroscience: current understanding and future research
Authors
Bader H. Shirah
Bader M. Ibrahim
Yasser Aladdin
Jon Sen
Publication date
18-05-2022
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 8/2022
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-022-06146-0

Other articles of this Issue 8/2022

Neurological Sciences 8/2022 Go to the issue