Skip to main content
Top
Published in: Neurological Sciences 3/2022

01-03-2022 | Amyotrophic Lateral Sclerosis | Review Article

The role of efferocytosis in neuro-degenerative diseases

Authors: Forough Taheri, Eskandar Taghizadeh, Jamshid Gholizadeh Navashenaq, Mehdi Rezaee, Seyed Mohammad Gheibihayat

Published in: Neurological Sciences | Issue 3/2022

Login to get access

Abstract

Efferocytosis has a critical role in maintaining tissues and organs’ homeostasis by removing apoptotic cells. It is essential for human health, and disturbances in efferocytosis may result indifferent illnesses. In case of inadequate clearance of the dead cells, the content in the cells would be released. In fact, it induces some damages to the tissue and leads to the prolonged inflammation, so unsuitable phagocytosis of the apoptotic cells is involved in occurrence as well as expansion of numerous human chronic inflammatory diseases. Studies have shown age dependence of the neuro-degenerative diseases, which are largely due to the neuro-inflammation and the loss of neurons and thus cause the brain’s functional disorders. Efferocytosis is coupled to anti-inflammatory responses that contribute to the elimination of the dying neurons in neuro-degenerative diseases, so its disruption may make a risk factor in numerous human chronic inflammatory diseases such as multiple sclerosis, Alzheimer’s disease, glioblastoma, and Rett syndrome. This study is a review of the efferocytosis molecular pathways and their role in neuro-degenerative diseases in order to discover a new treatment option to cure patients.
Literature
1.
go back to reference Agrawal M (2020) Chapter 26 - Molecular basis of chronic neurodegeneration. In: Kumar D (ed) Clinical molecular medicine. Academic Press, pp 447–60CrossRef Agrawal M (2020) Chapter 26 - Molecular basis of chronic neurodegeneration. In: Kumar D (ed) Clinical molecular medicine. Academic Press, pp 447–60CrossRef
2.
go back to reference Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471PubMedCrossRef Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471PubMedCrossRef
5.
go back to reference Baidya F, Bohra M, Datta A, Sarmah D, Shah B, Jagtap P et al (2021) Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology 162(2):160–178PubMedCrossRef Baidya F, Bohra M, Datta A, Sarmah D, Shah B, Jagtap P et al (2021) Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology 162(2):160–178PubMedCrossRef
6.
go back to reference Song WM, Colonna M (2018) The microglial response to neurodegenerative disease. Adv Immunol 139:1–50PubMedCrossRef Song WM, Colonna M (2018) The microglial response to neurodegenerative disease. Adv Immunol 139:1–50PubMedCrossRef
7.
go back to reference Parnaik R, Raff M, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857PubMedCrossRef Parnaik R, Raff M, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857PubMedCrossRef
8.
go back to reference Szondy Z, Garabuczi E, Joós G, Tsay GJ, Sarang Z (2014) Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol. 5:354PubMedPubMedCentralCrossRef Szondy Z, Garabuczi E, Joós G, Tsay GJ, Sarang Z (2014) Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol. 5:354PubMedPubMedCentralCrossRef
9.
12.
go back to reference Martinez-Vicente M (ed) (2015)Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation.Semin Cell Dev Biol 40:115–126 Martinez-Vicente M (ed) (2015)Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation.Semin Cell Dev Biol 40:115–126
13.
go back to reference Buss RR, Gould TW, Ma J, Vinsant S, Prevette D, Winseck A et al (2006) Neuromuscular development in the absence of programmed cell death: phenotypic alteration of motoneurons and muscle. J Neurosci 26(52):13413–13427PubMedPubMedCentralCrossRef Buss RR, Gould TW, Ma J, Vinsant S, Prevette D, Winseck A et al (2006) Neuromuscular development in the absence of programmed cell death: phenotypic alteration of motoneurons and muscle. J Neurosci 26(52):13413–13427PubMedPubMedCentralCrossRef
14.
go back to reference McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE et al (2010) Annexin A1: A central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 185(10):6317–28PubMedCrossRef McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE et al (2010) Annexin A1: A central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 185(10):6317–28PubMedCrossRef
18.
go back to reference Abdolmaleki F, Farahani N, Hayat SMG, Pirro M, Bianconi V, Barreto GE et al (2018) The role of efferocytosis in autoimmune diseases. Front Immunol 20(9):1645CrossRef Abdolmaleki F, Farahani N, Hayat SMG, Pirro M, Bianconi V, Barreto GE et al (2018) The role of efferocytosis in autoimmune diseases. Front Immunol 20(9):1645CrossRef
19.
go back to reference Voll R, Herrmann M, Roth E, Stach C, Kalden J, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351PubMedCrossRef Voll R, Herrmann M, Roth E, Stach C, Kalden J, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351PubMedCrossRef
20.
go back to reference Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5(1):a008748PubMedPubMedCentralCrossRef Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5(1):a008748PubMedPubMedCentralCrossRef
21.
go back to reference Lauber K, Bohn E, Kröber SM, Xiao Y-j, Blumenthal SG, Lindemann RK et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 113(6):717–30PubMedCrossRef Lauber K, Bohn E, Kröber SM, Xiao Y-j, Blumenthal SG, Lindemann RK et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 113(6):717–30PubMedCrossRef
22.
go back to reference Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER et al (2010) Pannexin 1 channels mediate ‘find–me’signal release and membrane permeability during apoptosis. Nature 467(7317):863–867PubMedPubMedCentralCrossRef Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER et al (2010) Pannexin 1 channels mediate ‘find–me’signal release and membrane permeability during apoptosis. Nature 467(7317):863–867PubMedPubMedCentralCrossRef
23.
go back to reference Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al (2009) Nucleotides released by apoptotic cells act as a find me signal for phagocytic clearance. Nature 461(7261):282–286PubMedPubMedCentralCrossRef Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al (2009) Nucleotides released by apoptotic cells act as a find me signal for phagocytic clearance. Nature 461(7261):282–286PubMedPubMedCentralCrossRef
24.
go back to reference Qu Y, Misaghi S, Newton K, Gilmour L, Louie S, Cupp J et al (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol. 186(11):6553–61PubMedCrossRef Qu Y, Misaghi S, Newton K, Gilmour L, Louie S, Cupp J et al (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol. 186(11):6553–61PubMedCrossRef
25.
go back to reference Pascual O, Achour SB, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109(4):E197PubMedCrossRef Pascual O, Achour SB, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109(4):E197PubMedCrossRef
26.
go back to reference Truman L, Ford C, Pasikowska M, Pound J, Wilkinson S, Dumitriu I et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026PubMedCrossRef Truman L, Ford C, Pasikowska M, Pound J, Wilkinson S, Dumitriu I et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026PubMedCrossRef
27.
go back to reference Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R et al (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J 22(8):2629PubMedPubMedCentralCrossRef Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R et al (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J 22(8):2629PubMedPubMedCentralCrossRef
28.
go back to reference Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R et al (2016) Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 44(2):287PubMedCrossRef Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R et al (2016) Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 44(2):287PubMedCrossRef
29.
go back to reference Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5(7):560–570PubMedCrossRef Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5(7):560–570PubMedCrossRef
30.
go back to reference Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, Halama A et al (2012) Release of lysophospholipid’find me’signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 45(8):568PubMedCrossRef Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, Halama A et al (2012) Release of lysophospholipid’find me’signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 45(8):568PubMedCrossRef
31.
go back to reference Peter C, Waibel M, Radu C, Yang L, Witte O, Schulze-Osthoff K et al (2008) Migration to apoptotic" find me" signals is mediated via the phagocyte receptor G2A. J Biol Chem 283(9):5296PubMedCrossRef Peter C, Waibel M, Radu C, Yang L, Witte O, Schulze-Osthoff K et al (2008) Migration to apoptotic" find me" signals is mediated via the phagocyte receptor G2A. J Biol Chem 283(9):5296PubMedCrossRef
32.
go back to reference Fadok V, Bratton D, Frasch S, Warner M, Henson P (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5(7):551PubMedCrossRef Fadok V, Bratton D, Frasch S, Warner M, Henson P (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5(7):551PubMedCrossRef
33.
go back to reference Suzuki J, Denning D, Imanishi E, Horvitz H, Nagata S (2013) Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science (New York, NY) 341(6144):403CrossRef Suzuki J, Denning D, Imanishi E, Horvitz H, Nagata S (2013) Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science (New York, NY) 341(6144):403CrossRef
34.
go back to reference Yoon M, Park S, Won H, Na D, Lee B (2000) Solution structure and membrane-binding property of the N-terminal tail domain of human annexin I. FEBS Lett 484(3):241PubMedCrossRef Yoon M, Park S, Won H, Na D, Lee B (2000) Solution structure and membrane-binding property of the N-terminal tail domain of human annexin I. FEBS Lett 484(3):241PubMedCrossRef
35.
go back to reference Thornley TB, Fang Z, Balasubramanian S, Larocca RA, Gong W, Gupta S et al (2014) Fragile TIM-4–expressing tissue resident macrophages are migratory and immunoregulatory. J Clin Investig 124(8):3443PubMedPubMedCentralCrossRef Thornley TB, Fang Z, Balasubramanian S, Larocca RA, Gong W, Gupta S et al (2014) Fragile TIM-4–expressing tissue resident macrophages are migratory and immunoregulatory. J Clin Investig 124(8):3443PubMedPubMedCentralCrossRef
36.
go back to reference Gardai S, McPhillips K, Frasch S, Janssen W, Starefeldt A, Murphy-Ullrich J et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321PubMedCrossRef Gardai S, McPhillips K, Frasch S, Janssen W, Starefeldt A, Murphy-Ullrich J et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321PubMedCrossRef
37.
go back to reference Ezekowitz R, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172(6):1785–1794PubMedCrossRef Ezekowitz R, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172(6):1785–1794PubMedCrossRef
38.
go back to reference Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343(6254):170PubMedCrossRef Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343(6254):170PubMedCrossRef
39.
go back to reference Gregory C, Devitt A, Moffatt O (1998) Roles of ICAM-3 and CD14 in the recognition and phagocytosis of apoptotic cells by macrophages. Biochem Soc Trans 26(4):644PubMedCrossRef Gregory C, Devitt A, Moffatt O (1998) Roles of ICAM-3 and CD14 in the recognition and phagocytosis of apoptotic cells by macrophages. Biochem Soc Trans 26(4):644PubMedCrossRef
42.
go back to reference Imbert PR, Saric A, Pedram K, Bertozzi CR, Grinstein S, Freeman SA (2021) An acquired and endogenous glycocalyx forms a bidirectional" don’t eat" and" don’t eat me" barrier to phagocytosis. Curr Biol. 31(1):77-895. e5PubMedCrossRef Imbert PR, Saric A, Pedram K, Bertozzi CR, Grinstein S, Freeman SA (2021) An acquired and endogenous glycocalyx forms a bidirectional" don’t eat" and" don’t eat me" barrier to phagocytosis. Curr Biol. 31(1):77-895. e5PubMedCrossRef
45.
go back to reference Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM et al (2002) Regulation of Rac1 activation by the low density lipoprotein receptor–related protein. J Cell Biol 159(6):1061PubMedPubMedCentralCrossRef Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM et al (2002) Regulation of Rac1 activation by the low density lipoprotein receptor–related protein. J Cell Biol 159(6):1061PubMedPubMedCentralCrossRef
46.
go back to reference Park D, Tosello-Trampont A, Elliott M, Lu M, Haney L, Ma Z et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430PubMedCrossRef Park D, Tosello-Trampont A, Elliott M, Lu M, Haney L, Ma Z et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430PubMedCrossRef
47.
go back to reference Wang Y, Subramanian M, Yurdagul A Jr, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J et al (2017) Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171(2):331PubMedPubMedCentralCrossRef Wang Y, Subramanian M, Yurdagul A Jr, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J et al (2017) Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171(2):331PubMedPubMedCentralCrossRef
49.
50.
go back to reference Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG et al (2018) Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 21(3):329PubMedPubMedCentralCrossRef Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG et al (2018) Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 21(3):329PubMedPubMedCentralCrossRef
51.
go back to reference Brown G, Neher J (2012) Eaten alive! Cell death by primary phagocytosis:’phagoptosis’. Trends Biochem Sci 37(8):325PubMedCrossRef Brown G, Neher J (2012) Eaten alive! Cell death by primary phagocytosis:’phagoptosis’. Trends Biochem Sci 37(8):325PubMedCrossRef
53.
54.
go back to reference Szondy Z, Sarang Z, Kiss B, Garabuczi É, Köröskényi K (2017) Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front Immunol 8:909 Szondy Z, Sarang Z, Kiss B, Garabuczi É, Köröskényi K (2017) Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front Immunol 8:909
55.
go back to reference Kuenkele S, Beyer T, Voll R, Kalden J, Herrmann M (2003) Impaired clearance of apoptotic cells in systemic lupus erythematosus: challenge of T and B cell tolerance. Curr Rheumatol Rep 5(3):175PubMedCrossRef Kuenkele S, Beyer T, Voll R, Kalden J, Herrmann M (2003) Impaired clearance of apoptotic cells in systemic lupus erythematosus: challenge of T and B cell tolerance. Curr Rheumatol Rep 5(3):175PubMedCrossRef
56.
go back to reference Franz S, Gaipl U, Munoz L, Sheriff A, Beer A, Kalden J et al (2006) Apoptosis and autoimmunity: when apoptotic cells break their silence. Curr Rheumatol Rep 8(4):245PubMedCrossRef Franz S, Gaipl U, Munoz L, Sheriff A, Beer A, Kalden J et al (2006) Apoptosis and autoimmunity: when apoptotic cells break their silence. Curr Rheumatol Rep 8(4):245PubMedCrossRef
58.
go back to reference Haukedal H, Freude K (2019) Implications of microglia in amyotrophic lateral sclerosis and frontotemporal dementia. J Mol Biol 431(9):1818–1829PubMedCrossRef Haukedal H, Freude K (2019) Implications of microglia in amyotrophic lateral sclerosis and frontotemporal dementia. J Mol Biol 431(9):1818–1829PubMedCrossRef
59.
go back to reference Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P et al (2014) The TREM2 variant p. R47H is a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71(4):449PubMedPubMedCentralCrossRef Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P et al (2014) The TREM2 variant p. R47H is a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71(4):449PubMedPubMedCentralCrossRef
60.
go back to reference Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo J-R et al (2011) Progranulin Is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol 178(1):284PubMedPubMedCentralCrossRef Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo J-R et al (2011) Progranulin Is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol 178(1):284PubMedPubMedCentralCrossRef
61.
go back to reference Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A et al (2017) Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol Genet 26(4):686–701PubMed Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A et al (2017) Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol Genet 26(4):686–701PubMed
62.
go back to reference Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691PubMedPubMedCentralCrossRef Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691PubMedPubMedCentralCrossRef
63.
go back to reference Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127PubMedCrossRef Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127PubMedCrossRef
65.
go back to reference Guo Y, Wei X, Yan H, Qin Y, Yan S, Liu J et al (2019) TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s disease models. FASEB J 33(11):12164–12174PubMedPubMedCentralCrossRef Guo Y, Wei X, Yan H, Qin Y, Yan S, Liu J et al (2019) TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s disease models. FASEB J 33(11):12164–12174PubMedPubMedCentralCrossRef
66.
go back to reference Zhang Y, Feng S, Nie K, Li Y, Gao Y, Gan R et al (2018) TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem Biophys Res Commun 499(4):797–802PubMedCrossRef Zhang Y, Feng S, Nie K, Li Y, Gao Y, Gan R et al (2018) TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem Biophys Res Commun 499(4):797–802PubMedCrossRef
67.
go back to reference Kim KS, Marcogliese PC, Yang J, Callaghan SM, Resende V, Abdel-Messih E et al (2018) Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proc Natl Acad Sci USA 115(22):E5164–E5173PubMedPubMedCentralCrossRef Kim KS, Marcogliese PC, Yang J, Callaghan SM, Resende V, Abdel-Messih E et al (2018) Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proc Natl Acad Sci USA 115(22):E5164–E5173PubMedPubMedCentralCrossRef
68.
go back to reference Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147–152PubMedPubMedCentralCrossRef Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147–152PubMedPubMedCentralCrossRef
69.
go back to reference Träger U, Andre R, Magnusson-Lind A, Miller JRC, Connolly C, Weiss A et al (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388–398PubMedPubMedCentralCrossRef Träger U, Andre R, Magnusson-Lind A, Miller JRC, Connolly C, Weiss A et al (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388–398PubMedPubMedCentralCrossRef
70.
go back to reference Hu J, Xiao Q, Dong M, Guo D, Wu X, Wang B (2020) Glioblastoma Immunotherapy targeting the innate immune checkpoint CD47-SIRPα axis. Front Immun. 11:593219CrossRef Hu J, Xiao Q, Dong M, Guo D, Wu X, Wang B (2020) Glioblastoma Immunotherapy targeting the innate immune checkpoint CD47-SIRPα axis. Front Immun. 11:593219CrossRef
71.
go back to reference Schafer DP, Heller CT, Gunner G, Heller M, Gordon C, Hammond T et al (2016) Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. Elife. 5:e15224PubMedPubMedCentralCrossRef Schafer DP, Heller CT, Gunner G, Heller M, Gordon C, Hammond T et al (2016) Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. Elife. 5:e15224PubMedPubMedCentralCrossRef
72.
go back to reference Goedert M, Spillantini M (2006) A century of Alzheimer’s disease. Science (New York, NY) 314(5800):777CrossRef Goedert M, Spillantini M (2006) A century of Alzheimer’s disease. Science (New York, NY) 314(5800):777CrossRef
73.
go back to reference Morrison B, Hof P, Morrison J (1998) Determinants of neuronal vulnerability in neurodegenerative diseases. Ann Neurol 44(3 Suppl 1):S32PubMedCrossRef Morrison B, Hof P, Morrison J (1998) Determinants of neuronal vulnerability in neurodegenerative diseases. Ann Neurol 44(3 Suppl 1):S32PubMedCrossRef
74.
go back to reference Suescun J, Chandra S, Schiess MC (2019) The role of neuroinflammation in neurodegenerative disorders. Translational Inflammation. Elsevier, p 241–67 Suescun J, Chandra S, Schiess MC (2019) The role of neuroinflammation in neurodegenerative disorders. Translational Inflammation. Elsevier, p 241–67
75.
go back to reference Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 23(7):2665PubMedPubMedCentralCrossRef Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 23(7):2665PubMedPubMedCentralCrossRef
76.
go back to reference Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657PubMedPubMedCentralCrossRef Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657PubMedPubMedCentralCrossRef
77.
go back to reference Streit WJ, Khoshbouei H, Bechmann I (2021) The role of microglia in sporadic Alzheimer’s disease. J Alzheimers Dis 79:961–968PubMedCrossRef Streit WJ, Khoshbouei H, Bechmann I (2021) The role of microglia in sporadic Alzheimer’s disease. J Alzheimers Dis 79:961–968PubMedCrossRef
79.
go back to reference Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ et al (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174(4):547–556PubMedPubMedCentralCrossRef Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ et al (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174(4):547–556PubMedPubMedCentralCrossRef
80.
go back to reference Pohl A, Devaux PF, Herrmann A (2005) Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochem Biophys Acta 1733(1):29–52PubMed Pohl A, Devaux PF, Herrmann A (2005) Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochem Biophys Acta 1733(1):29–52PubMed
81.
go back to reference Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem 290(40):24152–24165PubMedPubMedCentralCrossRef Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem 290(40):24152–24165PubMedPubMedCentralCrossRef
82.
go back to reference Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW et al (2014) Loss of P2Y2 nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer’s disease. Mol Neurobiol 49(2):1031–1042PubMedCrossRef Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW et al (2014) Loss of P2Y2 nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer’s disease. Mol Neurobiol 49(2):1031–1042PubMedCrossRef
83.
go back to reference Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido T, Hsiao K et al (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152(1):307PubMedPubMedCentral Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido T, Hsiao K et al (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152(1):307PubMedPubMedCentral
84.
go back to reference Smith J, Das A, Ray S, Banik N (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10PubMedCrossRef Smith J, Das A, Ray S, Banik N (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10PubMedCrossRef
85.
go back to reference Morales I, Farías G, Maccioni R (2010) Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. NeuroImmunoModulation 17(3):202PubMedCrossRef Morales I, Farías G, Maccioni R (2010) Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. NeuroImmunoModulation 17(3):202PubMedCrossRef
86.
go back to reference Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368PubMedCrossRef Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368PubMedCrossRef
87.
go back to reference Brichta L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat 8:152 Brichta L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat 8:152
88.
go back to reference Chauhan A, Jeans AF (2015) Is Parkinson’s disease truly a prion-like disorder? An Appraisal of Current Evidence. Neurol Res Int. 2015:1–8CrossRef Chauhan A, Jeans AF (2015) Is Parkinson’s disease truly a prion-like disorder? An Appraisal of Current Evidence. Neurol Res Int. 2015:1–8CrossRef
89.
go back to reference Depboylu C, Stricker S, Ghobril J-P, Oertel WH, Priller J, Höglinger GU (2012) Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 238(2):183–191PubMedCrossRef Depboylu C, Stricker S, Ghobril J-P, Oertel WH, Priller J, Höglinger GU (2012) Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 238(2):183–191PubMedCrossRef
90.
go back to reference Ingelsson M (2016) Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and Other Lewy Body disorders. Front Neurosci 10:408 Ingelsson M (2016) Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and Other Lewy Body disorders. Front Neurosci 10:408
91.
go back to reference McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34PubMedCrossRef McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34PubMedCrossRef
93.
go back to reference Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R et al (2020) Huntington’s disease alters human neurodevelopment. Science 369(6505):787PubMedPubMedCentralCrossRef Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R et al (2020) Huntington’s disease alters human neurodevelopment. Science 369(6505):787PubMedPubMedCentralCrossRef
94.
go back to reference Ransohoff R, Perry V (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119PubMedCrossRef Ransohoff R, Perry V (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119PubMedCrossRef
95.
go back to reference Morigaki R, Goto S (2017) Striatal vulnerability in Huntington’s disease: neuroprotection versus neurotoxicity. Brain Sci 7(6):63 Morigaki R, Goto S (2017) Striatal vulnerability in Huntington’s disease: neuroprotection versus neurotoxicity. Brain Sci 7(6):63
96.
go back to reference Savage JC, St-Pierre M-K, Carrier M, El Hajj H, Novak SW, Sanchez MG et al (2020) Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington’s disease pathology. J Neuroinflamm 17(1):1–18 Savage JC, St-Pierre M-K, Carrier M, El Hajj H, Novak SW, Sanchez MG et al (2020) Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington’s disease pathology. J Neuroinflamm 17(1):1–18
97.
go back to reference Crotti A, Benner C, Kerman B, Gosselin D, Lagier-Tourenne C, Zuccato C et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17(4):513PubMedPubMedCentralCrossRef Crotti A, Benner C, Kerman B, Gosselin D, Lagier-Tourenne C, Zuccato C et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17(4):513PubMedPubMedCentralCrossRef
98.
go back to reference Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S et al (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics. 11(3):679PubMedPubMedCentralCrossRef Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S et al (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics. 11(3):679PubMedPubMedCentralCrossRef
99.
go back to reference Di Pardo A, Alberti S, Maglione V, Amico E, Cortes EP, Elifani F et al (2013) Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease. Mol Brain 6:55PubMedPubMedCentralCrossRef Di Pardo A, Alberti S, Maglione V, Amico E, Cortes EP, Elifani F et al (2013) Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease. Mol Brain 6:55PubMedPubMedCentralCrossRef
100.
go back to reference Chang K, Wu Y, Chen Y, Chen C (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121PubMedCrossRef Chang K, Wu Y, Chen Y, Chen C (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121PubMedCrossRef
101.
go back to reference Kwan W, Träger U, Davalos D, Chou A, Bouchard J, Andre R et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Investig 122(12):4737–4747PubMedPubMedCentralCrossRef Kwan W, Träger U, Davalos D, Chou A, Bouchard J, Andre R et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Investig 122(12):4737–4747PubMedPubMedCentralCrossRef
102.
go back to reference Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. The Lancet 377(9769):942–955CrossRef Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. The Lancet 377(9769):942–955CrossRef
103.
go back to reference Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23PubMedCrossRef Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23PubMedCrossRef
104.
go back to reference Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35PubMedCrossRef Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35PubMedCrossRef
105.
go back to reference Ince P, Shaw P, Slade J, Jones C, Hudgson P (1996) Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunocytochemical changes. Acta Neuropathol 92(4):395PubMedCrossRef Ince P, Shaw P, Slade J, Jones C, Hudgson P (1996) Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunocytochemical changes. Acta Neuropathol 92(4):395PubMedCrossRef
106.
go back to reference Sanagi T, Yuasa S, Nakamura Y, Suzuki E, Aoki M, Warita H et al (2010) Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. J Neurosci Res 88(12):2736PubMed Sanagi T, Yuasa S, Nakamura Y, Suzuki E, Aoki M, Warita H et al (2010) Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. J Neurosci Res 88(12):2736PubMed
107.
go back to reference Allen S, Watson J, Shoemark D, Barua N, Patel N (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155PubMedCrossRef Allen S, Watson J, Shoemark D, Barua N, Patel N (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155PubMedCrossRef
108.
go back to reference Fiala M, Chattopadhay M, La Cava A, Tse E, Liu G, Lourenco E et al (2010) IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation 7:76PubMedPubMedCentralCrossRef Fiala M, Chattopadhay M, La Cava A, Tse E, Liu G, Lourenco E et al (2010) IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation 7:76PubMedPubMedCentralCrossRef
109.
go back to reference Henkel J, Beers D, Zhao W, Appel S (2009) Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 4(4):389PubMedCrossRef Henkel J, Beers D, Zhao W, Appel S (2009) Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 4(4):389PubMedCrossRef
110.
go back to reference Takeuchi S, Fujiwara N, Ido A, Oono M, Takeuchi Y, Tateno M et al (2010) Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 69(10):1044PubMedCrossRef Takeuchi S, Fujiwara N, Ido A, Oono M, Takeuchi Y, Tateno M et al (2010) Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 69(10):1044PubMedCrossRef
111.
go back to reference Ciric B, El-behi M, Cabrera R, Zhang G, Rostami A (2009) IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol 182(9):5296PubMedCrossRef Ciric B, El-behi M, Cabrera R, Zhang G, Rostami A (2009) IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol 182(9):5296PubMedCrossRef
112.
go back to reference Zhang L, Liu X-g, Liu D-q, Yu X-l, Zhang L-x, Zhu J et al (2020) A conditionally releasable “do not eat me” CD47 signal facilitates microglia-targeted drug delivery for the treatment of Alzheimer’s disease. Adv Funct Mater. 30(24):1910691CrossRef Zhang L, Liu X-g, Liu D-q, Yu X-l, Zhang L-x, Zhu J et al (2020) A conditionally releasable “do not eat me” CD47 signal facilitates microglia-targeted drug delivery for the treatment of Alzheimer’s disease. Adv Funct Mater. 30(24):1910691CrossRef
113.
go back to reference Zhang M, Qian C, Zheng Z-G, Qian F, Wang Y, Thu PM et al (2018) Jujuboside A promotes Aβ clearance and ameliorates cognitive deficiency in Alzheimer’s disease through activating Axl/HSP90/PPARγ pathway. Theranostics 8(15):4262–4278PubMedPubMedCentralCrossRef Zhang M, Qian C, Zheng Z-G, Qian F, Wang Y, Thu PM et al (2018) Jujuboside A promotes Aβ clearance and ameliorates cognitive deficiency in Alzheimer’s disease through activating Axl/HSP90/PPARγ pathway. Theranostics 8(15):4262–4278PubMedPubMedCentralCrossRef
114.
go back to reference Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147PubMedPubMedCentralCrossRef Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147PubMedPubMedCentralCrossRef
115.
go back to reference Träger U, Andre R, Magnusson-Lind A, Miller JR, Connolly C, Weiss A et al (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388PubMedPubMedCentralCrossRef Träger U, Andre R, Magnusson-Lind A, Miller JR, Connolly C, Weiss A et al (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388PubMedPubMedCentralCrossRef
Metadata
Title
The role of efferocytosis in neuro-degenerative diseases
Authors
Forough Taheri
Eskandar Taghizadeh
Jamshid Gholizadeh Navashenaq
Mehdi Rezaee
Seyed Mohammad Gheibihayat
Publication date
01-03-2022
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 3/2022
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-021-05835-6

Other articles of this Issue 3/2022

Neurological Sciences 3/2022 Go to the issue