Skip to main content
Top
Published in: Neurological Sciences 8/2020

01-08-2020 | Parkinson's Disease | Review Article

Research advances on L-DOPA-induced dyskinesia: from animal models to human disease

Authors: Xi Chen, Yuanyuan Wang, Haifeng Wu, Cheng Cheng, Weidong Le

Published in: Neurological Sciences | Issue 8/2020

Login to get access

Abstract

L-3,4-dihydroxyphenylalanine (L-DOPA) was introduced about half a century ago and is still the most effective medicine for the treatment of Parkinson’s disease (PD). However, such chronic treatment eventually leads to L-DOPA-induced dyskinesia (LID) on the majority of PD patients. Besides L-DOPA, dopamine agonists are able to induce dyskinesia as well. So far no drug is yet claimed to effectively curb LID, and amantadine has only a modest benefit on LID patients. Thus, understanding the molecular mechanisms behind LID is urgently needed, and developing new antiparkinsonian medications with low dyskinesia potential is necessarily required. In the last decades, several animal models have been generated for these aims. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-lesioned monkey models always considered as gold standard of PD studies are also applied well for the research of LID. Additionally, several rodent models were developed for such clinical needs. Of them, 6-hydroxydopamine (OHDA)-lesioned rats or mice exhibiting countable abnormal involuntary movements (AIMs) after L-DOPA treatments have becoming widely applicable tools for LID pathogenesis studies. Under investigating these models for years, multiple potential LID-associated genes and pathways have been innovatively identified, which largely advance the therapeutic and preventative strategies for the disease. In this review, we attempt to update the recent findings represented in LID animal models and trial studies, which may facilitate the mechanistic understanding, drug development, and clinical evaluation of this movement disorder.
Literature
1.
go back to reference Jiang DQ, Wang HK, Wang Y, Li MX, Jiang LL, Wang Y (2020) Rasagiline combined with levodopa therapy versus levodopa mono therapy for patients with Parkinson’s disease: a systematic review. Neurol Sci 41(1):101–109PubMed Jiang DQ, Wang HK, Wang Y, Li MX, Jiang LL, Wang Y (2020) Rasagiline combined with levodopa therapy versus levodopa mono therapy for patients with Parkinson’s disease: a systematic review. Neurol Sci 41(1):101–109PubMed
2.
go back to reference Kulisevsky J, Oliveira L, Fox SH (2018) Update in therapeutic strategies for Parkinsonʼs disease. Curr Opin Neurol 31(4):439–447PubMed Kulisevsky J, Oliveira L, Fox SH (2018) Update in therapeutic strategies for Parkinsonʼs disease. Curr Opin Neurol 31(4):439–447PubMed
3.
go back to reference Kim C (2019) Non-motor symptoms of Parkinson's disease: dopaminergic basis or not? Neurol Sci 40(2):2635–2636PubMed Kim C (2019) Non-motor symptoms of Parkinson's disease: dopaminergic basis or not? Neurol Sci 40(2):2635–2636PubMed
4.
go back to reference Mantri S, Morley JF, Siderowf AD (2019) The importance of preclinical diagnostics in Parkinson disease. Parkinsonism Relat Disord 64:20–28PubMed Mantri S, Morley JF, Siderowf AD (2019) The importance of preclinical diagnostics in Parkinson disease. Parkinsonism Relat Disord 64:20–28PubMed
5.
go back to reference Hayes MW, Fung VS, Kimber TE, O’Sullivan JD (2019) Updates and advances in the treatment of Parkinson disease. Med J Aust 211(6):277–283PubMed Hayes MW, Fung VS, Kimber TE, O’Sullivan JD (2019) Updates and advances in the treatment of Parkinson disease. Med J Aust 211(6):277–283PubMed
6.
go back to reference Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto GE, Hayat SMG, Sahebkar A (2019) Cellular and molecular aspects of Parkinson treatment: future therapeutic perspectives. Mol Neurobiol 56(7):4799–4811PubMed Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto GE, Hayat SMG, Sahebkar A (2019) Cellular and molecular aspects of Parkinson treatment: future therapeutic perspectives. Mol Neurobiol 56(7):4799–4811PubMed
7.
go back to reference Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE (2018) Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts: dyskinesia in PD. Ann Neurol 84(6):797–811PubMed Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE (2018) Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts: dyskinesia in PD. Ann Neurol 84(6):797–811PubMed
8.
go back to reference Manson A, Stirpe P, Schrag A (2012) Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J Park Dis 2(3):189–198 Manson A, Stirpe P, Schrag A (2012) Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J Park Dis 2(3):189–198
9.
go back to reference Calabresi P, Standaert DG (2019) Dystonia and levodopa-induced dyskinesias in Parkinson’s disease: is there a connection? Neurobiol Dis 132:104579PubMed Calabresi P, Standaert DG (2019) Dystonia and levodopa-induced dyskinesias in Parkinson’s disease: is there a connection? Neurobiol Dis 132:104579PubMed
10.
go back to reference Cenci MA, Ohlin KE, Odin P (2011) Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson’s disease. CNS Neurol Disord Drug Targets 10:670–684PubMed Cenci MA, Ohlin KE, Odin P (2011) Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson’s disease. CNS Neurol Disord Drug Targets 10:670–684PubMed
11.
go back to reference Le W, Sayana P, Jankovic J (2014) Animal models of Parkinson’s disease: a gateway to therapeutics? Neurotherapeutics 11(1):92–110PubMed Le W, Sayana P, Jankovic J (2014) Animal models of Parkinson’s disease: a gateway to therapeutics? Neurotherapeutics 11(1):92–110PubMed
12.
go back to reference Veyres N, Hamadjida A, Huot P (2000) Predictive value of Parkinsonian primates in pharmacologic studies: a comparison between the macaque, marmoset, and squirrel monkey. J Pharmacol Exp Ther 365:379–397 Veyres N, Hamadjida A, Huot P (2000) Predictive value of Parkinsonian primates in pharmacologic studies: a comparison between the macaque, marmoset, and squirrel monkey. J Pharmacol Exp Ther 365:379–397
13.
go back to reference Cenci MA, Crossman AR (2018) Animal models of l -dopa-induced dyskinesia in Parkinson’s disease: animal models of dyskinesia in PD. Mov Disord 33(6):889–899PubMed Cenci MA, Crossman AR (2018) Animal models of l -dopa-induced dyskinesia in Parkinson’s disease: animal models of dyskinesia in PD. Mov Disord 33(6):889–899PubMed
14.
go back to reference Rascol O, Perez-Lloret S, Ferreira JJ (2015) New treatments for levodopa-induced motor complications: new treatments for motor complication. Mov Disord 30(11):1451–1460PubMed Rascol O, Perez-Lloret S, Ferreira JJ (2015) New treatments for levodopa-induced motor complications: new treatments for motor complication. Mov Disord 30(11):1451–1460PubMed
15.
go back to reference Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 80(14):4546–4550PubMed Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 80(14):4546–4550PubMed
16.
go back to reference Jenner P, Rupniak NM, Rose S, Kelly E, Kilpatrick G, Lees A, Marsden CD (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50:85–90PubMed Jenner P, Rupniak NM, Rose S, Kelly E, Kilpatrick G, Lees A, Marsden CD (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50:85–90PubMed
17.
go back to reference Wichmann T, Bergman H, Starr PA, DeLong MR, Watts RL, Subramanian T (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 125(4):397–409PubMed Wichmann T, Bergman H, Starr PA, DeLong MR, Watts RL, Subramanian T (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 125(4):397–409PubMed
18.
go back to reference William Langston J, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292(2):390–394 William Langston J, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292(2):390–394
19.
go back to reference Morissette M, Di Paolo T (2018) Non-human primate models of PD to test novel therapies. J Neural Transm 125(3):291–324PubMed Morissette M, Di Paolo T (2018) Non-human primate models of PD to test novel therapies. J Neural Transm 125(3):291–324PubMed
20.
go back to reference Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 184:133–157PubMed Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 184:133–157PubMed
21.
go back to reference Grégoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, Sahasranaman S, Gomez-Mancilla B, di Paolo T (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 17(4):270–276PubMed Grégoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, Sahasranaman S, Gomez-Mancilla B, di Paolo T (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 17(4):270–276PubMed
22.
go back to reference Fox SH, Johnston TH, Li Q, Brotchie J, Bezard E (2012) A critique of available scales and presentation of the non-human primate dyskinesia rating scale. Mov Disord 27(11):1373–1378PubMed Fox SH, Johnston TH, Li Q, Brotchie J, Bezard E (2012) A critique of available scales and presentation of the non-human primate dyskinesia rating scale. Mov Disord 27(11):1373–1378PubMed
23.
go back to reference Potts LF, Uthayathas S, Greven ACM, Dyavarshetty B, Mouradian MM, Papa SM (2015) A new quantitative rating scale for dyskinesia in nonhuman primates. Behav Pharmacol 26:109–116PubMedPubMedCentral Potts LF, Uthayathas S, Greven ACM, Dyavarshetty B, Mouradian MM, Papa SM (2015) A new quantitative rating scale for dyskinesia in nonhuman primates. Behav Pharmacol 26:109–116PubMedPubMedCentral
24.
go back to reference Vingill S, Connor-Robson N, Wade-Martins R (2018) Are rodent models of Parkinson’s disease behaving as they should? Behav Brain Res 352:133–141PubMed Vingill S, Connor-Robson N, Wade-Martins R (2018) Are rodent models of Parkinson’s disease behaving as they should? Behav Brain Res 352:133–141PubMed
25.
go back to reference Ungerstedt U (1968) 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110PubMed Ungerstedt U (1968) 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110PubMed
26.
go back to reference Raza C, Anjum R, Shakeel NUA (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90PubMed Raza C, Anjum R, Shakeel NUA (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90PubMed
27.
go back to reference Morin N, Jourdain VA, Di Paolo T (2014) Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol 256:105–116PubMed Morin N, Jourdain VA, Di Paolo T (2014) Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol 256:105–116PubMed
28.
go back to reference Sebastianutto I, Maslava N, Hopkins CR, Cenci MA (2016) Validation of an improved scale for rating l-DOPA-induced dyskinesia in the mouse and effects of specific dopamine receptor antagonists. Neurobiol Dis 96:156–170PubMed Sebastianutto I, Maslava N, Hopkins CR, Cenci MA (2016) Validation of an improved scale for rating l-DOPA-induced dyskinesia in the mouse and effects of specific dopamine receptor antagonists. Neurobiol Dis 96:156–170PubMed
29.
go back to reference Crabbé M, Van der Perren A, Weerasekera A, Himmelreich U, Baekelandt V, Van Laere K, Casteels C (2018) Altered mGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson’s disease and levodopa-induced dyskinesia. Neurobiol Aging 61:82–92PubMed Crabbé M, Van der Perren A, Weerasekera A, Himmelreich U, Baekelandt V, Van Laere K, Casteels C (2018) Altered mGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson’s disease and levodopa-induced dyskinesia. Neurobiol Aging 61:82–92PubMed
30.
go back to reference Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut P-O, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, de Deurwaerdère P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168PubMed Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut P-O, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, de Deurwaerdère P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168PubMed
31.
go back to reference Tronci E, Francardo V (2018) Animal models of l-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse. J Neural Transm 125(8):1137–1144PubMed Tronci E, Francardo V (2018) Animal models of l-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse. J Neural Transm 125(8):1137–1144PubMed
32.
go back to reference Le W, Zhang L, Xie W, Li S, Dani JA (2015) Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(−/−) mice. Neurobiol Aging 36(12):3314–3320PubMedPubMedCentral Le W, Zhang L, Xie W, Li S, Dani JA (2015) Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(−/−) mice. Neurobiol Aging 36(12):3314–3320PubMedPubMedCentral
33.
go back to reference Filali M, Lalonde R (2016) Neurobehavioral anomalies in the Pitx3/ak murine model of Parkinson’s disease and MPTP. Behav Genet 46(2):228–241PubMed Filali M, Lalonde R (2016) Neurobehavioral anomalies in the Pitx3/ak murine model of Parkinson’s disease and MPTP. Behav Genet 46(2):228–241PubMed
34.
go back to reference Pilleri M, Antonini A (2015) Therapeutic strategies to prevent and manage dyskinesias in Parkinson’s disease. Expert Opin Drug Saf 14(2):281–294PubMed Pilleri M, Antonini A (2015) Therapeutic strategies to prevent and manage dyskinesias in Parkinson’s disease. Expert Opin Drug Saf 14(2):281–294PubMed
35.
go back to reference Guridi J, González-Redondo R, Obeso JA (2012) Clinical features, pathophysiology, and treatment of levodopa-induced dyskinesias in Parkinson’s disease. Parkinsons Dis 2012:1–15 Guridi J, González-Redondo R, Obeso JA (2012) Clinical features, pathophysiology, and treatment of levodopa-induced dyskinesias in Parkinson’s disease. Parkinsons Dis 2012:1–15
36.
go back to reference Del Sorbo F, Albanese A (2008) Levodopa-induced dyskinesias and their management. J Neurol 255:32–41PubMed Del Sorbo F, Albanese A (2008) Levodopa-induced dyskinesias and their management. J Neurol 255:32–41PubMed
37.
go back to reference Pandey S, Srivanitchapoom P (2017) Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann Indian Acad Neurol 20(3):190–198PubMedPubMedCentral Pandey S, Srivanitchapoom P (2017) Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann Indian Acad Neurol 20(3):190–198PubMedPubMedCentral
38.
go back to reference Tran TN, Vo TNN, Frei K, Truong DD (2018) Levodopa-induced dyskinesia: clinical features, incidence, and risk factors. J Neural Transm 125(8):1109–1117PubMed Tran TN, Vo TNN, Frei K, Truong DD (2018) Levodopa-induced dyskinesia: clinical features, incidence, and risk factors. J Neural Transm 125(8):1109–1117PubMed
39.
go back to reference Matarazzo M, Perez-Soriano A, Stoessl AJ (2018) Dyskinesias and levodopa therapy: why wait? J Neural Transm 125(8):1119–1130PubMed Matarazzo M, Perez-Soriano A, Stoessl AJ (2018) Dyskinesias and levodopa therapy: why wait? J Neural Transm 125(8):1119–1130PubMed
40.
go back to reference Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease: management of advanced Parkinson’s disease. Mov Disord 33(6):900–908PubMed Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease: management of advanced Parkinson’s disease. Mov Disord 33(6):900–908PubMed
41.
go back to reference PD MED Collaborative Group (2014) Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 384(9949):1196–1205 PD MED Collaborative Group (2014) Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 384(9949):1196–1205
42.
go back to reference Goetz CG, Laska E, Hicking C, Damier P, Muller T, Mutt J et al (2008a) Placebo influences on dyskinesia in Parkinson’s disease. Mov Disord 23:700–707PubMedPubMedCentral Goetz CG, Laska E, Hicking C, Damier P, Muller T, Mutt J et al (2008a) Placebo influences on dyskinesia in Parkinson’s disease. Mov Disord 23:700–707PubMedPubMedCentral
43.
go back to reference Goetz CG, Nutt JG, Stebbins GT (2008b) The unified dyskinesia rating scale: presentation and clinimetric profile. Mov Disord 23:2398–2403PubMed Goetz CG, Nutt JG, Stebbins GT (2008b) The unified dyskinesia rating scale: presentation and clinimetric profile. Mov Disord 23:2398–2403PubMed
44.
go back to reference Makkos A, Kovács M, Pintér D, Janszky J, Kovács N (2019) Minimal clinically important difference for the historic parts of the Unified Dyskinesia Rating Scale. Parkinsonism Relat Disord 58:79–82PubMed Makkos A, Kovács M, Pintér D, Janszky J, Kovács N (2019) Minimal clinically important difference for the historic parts of the Unified Dyskinesia Rating Scale. Parkinsonism Relat Disord 58:79–82PubMed
45.
go back to reference Pahwa R, Tanner CM, Hauser RA, Isaacson SH, Nausieda PA, Truong DD, Agarwal P, Hull KL, Lyons KE, Johnson R, Stempien MJ (2017) ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID study): a randomized clinical trial. JAMA Neurol 74(8):941–949PubMedPubMedCentral Pahwa R, Tanner CM, Hauser RA, Isaacson SH, Nausieda PA, Truong DD, Agarwal P, Hull KL, Lyons KE, Johnson R, Stempien MJ (2017) ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID study): a randomized clinical trial. JAMA Neurol 74(8):941–949PubMedPubMedCentral
46.
go back to reference Delrobaei M, Baktash N, Gilmore G, McIsaac K, Jog M (2017) Using wearable technology to generate objective Parkinson’s disease dyskinesia severity score: possibilities for home monitoring. IEEE Trans Neural Syst Rehabil Eng 25(10):1853–1863PubMed Delrobaei M, Baktash N, Gilmore G, McIsaac K, Jog M (2017) Using wearable technology to generate objective Parkinson’s disease dyskinesia severity score: possibilities for home monitoring. IEEE Trans Neural Syst Rehabil Eng 25(10):1853–1863PubMed
47.
go back to reference Li MH, Mestre TA, Fox SH, Taati B (2018) Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation. J Neuroeng Rehabil 15(1):97PubMedPubMedCentral Li MH, Mestre TA, Fox SH, Taati B (2018) Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation. J Neuroeng Rehabil 15(1):97PubMedPubMedCentral
48.
go back to reference Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242PubMedPubMedCentral Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242PubMedPubMedCentral
49.
go back to reference Solís O, Moratalla R (2018) Dopamine receptors: homomeric and heteromeric complexes in l-DOPA-induced dyskinesia. J Neural Transm 125(8):1187–1194PubMed Solís O, Moratalla R (2018) Dopamine receptors: homomeric and heteromeric complexes in l-DOPA-induced dyskinesia. J Neural Transm 125(8):1187–1194PubMed
50.
go back to reference Pavón N, Martín AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59(1):64–74PubMed Pavón N, Martín AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59(1):64–74PubMed
51.
go back to reference Hernández LF, Castela I, Ruiz-DeDiego I, Obeso JA, Moratalla R (2017) Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease. Mov Disord 32(4):530–537 Hernández LF, Castela I, Ruiz-DeDiego I, Obeso JA, Moratalla R (2017) Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease. Mov Disord 32(4):530–537
52.
go back to reference Rangel-Barajas C, Silva I, Lopéz-Santiago LM, Aceves J, Erlij D, Florán B (2011) l-DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiol Dis 41(1):51–61PubMed Rangel-Barajas C, Silva I, Lopéz-Santiago LM, Aceves J, Erlij D, Florán B (2011) l-DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiol Dis 41(1):51–61PubMed
53.
go back to reference Keifman E, Ruiz-DeDiego I, Pafundo DE, Paz RM, Solís O, Murer MG, Moratalla R (2019) Optostimulation of striatonigral terminals in substantia nigra induces dyskinesia that increases after L-DOPA in a mouse model of Parkinson’s disease. Br J Pharmacol 176(13):2146–2161PubMedPubMedCentral Keifman E, Ruiz-DeDiego I, Pafundo DE, Paz RM, Solís O, Murer MG, Moratalla R (2019) Optostimulation of striatonigral terminals in substantia nigra induces dyskinesia that increases after L-DOPA in a mouse model of Parkinson’s disease. Br J Pharmacol 176(13):2146–2161PubMedPubMedCentral
54.
go back to reference Solís O, Garcia-Montes JR, Gonzalez-Granillo A, Xu M, Moratalla R (2017) Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor. Cereb Cortex 27(1):435–446PubMed Solís O, Garcia-Montes JR, Gonzalez-Granillo A, Xu M, Moratalla R (2017) Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor. Cereb Cortex 27(1):435–446PubMed
55.
go back to reference Wood M, Dubois V, Scheller D, Gillard M (2015) Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors. Br J Pharmacol 172(4):1124–1135PubMedPubMedCentral Wood M, Dubois V, Scheller D, Gillard M (2015) Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors. Br J Pharmacol 172(4):1124–1135PubMedPubMedCentral
56.
go back to reference Suarez LM, Alberquilla S, García-Montes JR, Moratalla R (2018) Differential synaptic remodeling by dopamine in direct and indirect striatal projection neurons in Pitx3 −/− mice, a genetic model of Parkinson’s disease. J Neurosci 38(15):3619–3630PubMedPubMedCentral Suarez LM, Alberquilla S, García-Montes JR, Moratalla R (2018) Differential synaptic remodeling by dopamine in direct and indirect striatal projection neurons in Pitx3 −/− mice, a genetic model of Parkinson’s disease. J Neurosci 38(15):3619–3630PubMedPubMedCentral
57.
go back to reference Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A et al (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 9:245PubMedPubMedCentral Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A et al (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 9:245PubMedPubMedCentral
58.
go back to reference Sebastianutto I, Cenci MA (2018) mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr Opin Pharmacol 38:81–89PubMed Sebastianutto I, Cenci MA (2018) mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr Opin Pharmacol 38:81–89PubMed
59.
go back to reference Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50(1):295–322PubMedPubMedCentral Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50(1):295–322PubMedPubMedCentral
60.
go back to reference Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, de Rosa A, Picconi B, Bezard E, Calabresi P, di Luca M, Usiello A, Gardoni F (2017) Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 108:54–64PubMed Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, de Rosa A, Picconi B, Bezard E, Calabresi P, di Luca M, Usiello A, Gardoni F (2017) Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 108:54–64PubMed
61.
go back to reference Charbonnier-Beaupel F, Malerbi M, Alcacer C, Tahiri K, Carpentier W, Wang C, During M, Xu D, Worley PF, Girault JA, Hervé D, Corvol JC (2015) Gene expression analyses identify Narp contribution in the development of L-DOPA-induced dyskinesia. J Neurosci 35(1):96–111PubMedPubMedCentral Charbonnier-Beaupel F, Malerbi M, Alcacer C, Tahiri K, Carpentier W, Wang C, During M, Xu D, Worley PF, Girault JA, Hervé D, Corvol JC (2015) Gene expression analyses identify Narp contribution in the development of L-DOPA-induced dyskinesia. J Neurosci 35(1):96–111PubMedPubMedCentral
63.
go back to reference Pan J, Yu J, Sun LX, Xie CS, Chang L, Wu JB et al (2019) ALDH1A1 regulates postsynaptic μ–opioid receptor expression in dorsal striatal projection neurons and mitigates dyskinesia through transsynaptic retinoic acid signaling. Sci Rep 9(1):3602PubMedPubMedCentral Pan J, Yu J, Sun LX, Xie CS, Chang L, Wu JB et al (2019) ALDH1A1 regulates postsynaptic μ–opioid receptor expression in dorsal striatal projection neurons and mitigates dyskinesia through transsynaptic retinoic acid signaling. Sci Rep 9(1):3602PubMedPubMedCentral
64.
go back to reference Sgroi S, Tonini R (2018) Opioidergic modulation of striatal circuits, implications in Parkinson’s disease and levodopa induced dyskinesia. Front Neurol 9:524PubMedPubMedCentral Sgroi S, Tonini R (2018) Opioidergic modulation of striatal circuits, implications in Parkinson’s disease and levodopa induced dyskinesia. Front Neurol 9:524PubMedPubMedCentral
65.
go back to reference Politis M, Niccolini F (2015) Serotonin in Parkinson’s disease. Behav Brain Res 277:136–145PubMed Politis M, Niccolini F (2015) Serotonin in Parkinson’s disease. Behav Brain Res 277:136–145PubMed
66.
go back to reference Sellnow RC, Newman JH, Chambers N, West AR, Steece-Collier K, Sandoval IM, Benskey MJ, Bishop C, Manfredsson FP (2019) Regulation of dopamine neurotransmission from metabolite neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathol Commun 7(1):8PubMedPubMedCentral Sellnow RC, Newman JH, Chambers N, West AR, Steece-Collier K, Sandoval IM, Benskey MJ, Bishop C, Manfredsson FP (2019) Regulation of dopamine neurotransmission from metabolite neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathol Commun 7(1):8PubMedPubMedCentral
67.
go back to reference Figge DA, Eskow Jaunarajs KL, Standaert DG (2016) Dynamic DNA methylation regulates levodopa-induced dyskinesia. J Neurosci 36(24):6514–6524PubMedPubMedCentral Figge DA, Eskow Jaunarajs KL, Standaert DG (2016) Dynamic DNA methylation regulates levodopa-induced dyskinesia. J Neurosci 36(24):6514–6524PubMedPubMedCentral
68.
go back to reference Figge DA, Standaert DG (2017) Dysregulation of BET proteins in levodopa-induced dyskinesia. Neurobiol Dis 102:125–132PubMedCentral Figge DA, Standaert DG (2017) Dysregulation of BET proteins in levodopa-induced dyskinesia. Neurobiol Dis 102:125–132PubMedCentral
69.
go back to reference Baul HS, Manikandan C, Sen D (2019) Cannabinoid receptor as a potential therapeutic target for Parkinson’s disease. Brain Res Bull 146:244–252PubMed Baul HS, Manikandan C, Sen D (2019) Cannabinoid receptor as a potential therapeutic target for Parkinson’s disease. Brain Res Bull 146:244–252PubMed
70.
go back to reference Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A (2003) Effects of levodopa on endocannabioid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci 18:1607–1614PubMed Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A (2003) Effects of levodopa on endocannabioid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci 18:1607–1614PubMed
71.
go back to reference Wang Y, Zhang GJ, Sun YN, Yao L, Wang HS, Du CX et al (2018) Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson’s disease by metabolomic technology. Behav Brain Res 347:175–183PubMed Wang Y, Zhang GJ, Sun YN, Yao L, Wang HS, Du CX et al (2018) Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson’s disease by metabolomic technology. Behav Brain Res 347:175–183PubMed
72.
go back to reference Won L, Ding Y, Singh P, Kang UJ (2014) Striatal cholinergic cell ablation attenuates l-DOPA induced dyskinesia in parkinsonian mice. J Neurosci 34(8):3090–3094PubMedPubMedCentral Won L, Ding Y, Singh P, Kang UJ (2014) Striatal cholinergic cell ablation attenuates l-DOPA induced dyskinesia in parkinsonian mice. J Neurosci 34(8):3090–3094PubMedPubMedCentral
73.
go back to reference Perez XA, Bordia T, Quik M (2018) The striatal cholinergic system in l-dopa-induced dyskinesias. J Neural Transm 125(8):1251–1262PubMed Perez XA, Bordia T, Quik M (2018) The striatal cholinergic system in l-dopa-induced dyskinesias. J Neural Transm 125(8):1251–1262PubMed
74.
go back to reference Chaudhuri KR, Jenner P, Antonini A (2019) Should there be less emphasis on levodopa-induced dyskinesia in Parkinson’s disease? Mov Disord 34(6):816–819PubMed Chaudhuri KR, Jenner P, Antonini A (2019) Should there be less emphasis on levodopa-induced dyskinesia in Parkinson’s disease? Mov Disord 34(6):816–819PubMed
75.
76.
go back to reference Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, Poewe W, Rascol O, Goetz CG, Sampaio C (2011) The Movement Disorder Society evidence-based medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov Disord 26(Suppl 3):S2–S41PubMed Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, Poewe W, Rascol O, Goetz CG, Sampaio C (2011) The Movement Disorder Society evidence-based medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov Disord 26(Suppl 3):S2–S41PubMed
77.
go back to reference Metman LV, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN (1998) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 50(5):1323–1326 Metman LV, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN (1998) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 50(5):1323–1326
78.
go back to reference Abdel-Salam OME (2015) Drug therapy for Parkinson’s disease: an update. World J Pharmacol 4(1):117–143 Abdel-Salam OME (2015) Drug therapy for Parkinson’s disease: an update. World J Pharmacol 4(1):117–143
79.
go back to reference Schaeffer E, Pilotto A, Berg D (2014) Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson’s disease. CNS Drugs 28(12):1155–1184PubMed Schaeffer E, Pilotto A, Berg D (2014) Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson’s disease. CNS Drugs 28(12):1155–1184PubMed
80.
go back to reference Del Bello F, Giannella M, Giorgioni G, Piergentili A, Quaglia W (2019) Receptor ligands as helping hands to L-DOPA in the treatment of Parkinson’s disease. Biomolecules 9(4):142PubMedCentral Del Bello F, Giannella M, Giorgioni G, Piergentili A, Quaglia W (2019) Receptor ligands as helping hands to L-DOPA in the treatment of Parkinson’s disease. Biomolecules 9(4):142PubMedCentral
81.
go back to reference Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS, Landen JW (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and parkinsonism. Mov Disord 23(13):1860–1866PubMedPubMedCentral Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS, Landen JW (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and parkinsonism. Mov Disord 23(13):1860–1866PubMedPubMedCentral
82.
go back to reference Herring WJ, Assaid C, Budd K, Vargo R, Mazenko RS, Lines C, Ellenbogen A, Verhagen Metman L (2017) A phase Ib randomized controlled study to evaluate the effectiveness of a single-dose of the NR2B selective N-methyl-D-aspartate antagonist MK-0657 on levodopa-induced dyskinesias and motor symptoms in patients with Parkinson disease. Clin Neuropharmacol 40(6):255–260PubMed Herring WJ, Assaid C, Budd K, Vargo R, Mazenko RS, Lines C, Ellenbogen A, Verhagen Metman L (2017) A phase Ib randomized controlled study to evaluate the effectiveness of a single-dose of the NR2B selective N-methyl-D-aspartate antagonist MK-0657 on levodopa-induced dyskinesias and motor symptoms in patients with Parkinson disease. Clin Neuropharmacol 40(6):255–260PubMed
83.
go back to reference Samadi P, Grégoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger N, Meltzer LT, Bédard PJ, di Paolo T (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29(7):1040–1051PubMed Samadi P, Grégoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger N, Meltzer LT, Bédard PJ, di Paolo T (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29(7):1040–1051PubMed
84.
go back to reference Pourmirbabaei S, Dolatshahi M, Rahmani F (2019) Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol 855:149–159PubMed Pourmirbabaei S, Dolatshahi M, Rahmani F (2019) Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol 855:149–159PubMed
85.
go back to reference Kumar R, Hauser RA, Mostillo J, Dronamraju N, Graf A, Merschhemke M, Kenney C (2016) Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson’s disease patients. Int J Neurosci 126(1):20–24PubMed Kumar R, Hauser RA, Mostillo J, Dronamraju N, Graf A, Merschhemke M, Kenney C (2016) Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson’s disease patients. Int J Neurosci 126(1):20–24PubMed
86.
go back to reference Tison F, Keywood C, Wakefield M, Durif F, Corvol J-C, Eggert K, Lew M, Isaacson S, Bezard E, Poli SM, Goetz CG, Trenkwalder C, Rascol O (2016) A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord 31(9):1373–1380PubMed Tison F, Keywood C, Wakefield M, Durif F, Corvol J-C, Eggert K, Lew M, Isaacson S, Bezard E, Poli SM, Goetz CG, Trenkwalder C, Rascol O (2016) A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord 31(9):1373–1380PubMed
87.
go back to reference Wirth A, Holst K, Ponimaskin E (2017) How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 151:35–56PubMed Wirth A, Holst K, Ponimaskin E (2017) How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 151:35–56PubMed
88.
go back to reference Huot P (2018) 5-HT 1A agonists and dyskinesia in Parkinson’s disease: a pharmacological perspective. Neurodegener Dis Manag 8(4):207–209PubMed Huot P (2018) 5-HT 1A agonists and dyskinesia in Parkinson’s disease: a pharmacological perspective. Neurodegener Dis Manag 8(4):207–209PubMed
89.
go back to reference Tani Y, Ogata A, Koyama M, Inoue T (2010) Effects of piclozotan (SUN N4057), a partial serotonin 1A receptor agonist, on motor complications induced by repeated administration of levodopa in parkinsonian rats. Eur J Pharmacol 649:218–223PubMed Tani Y, Ogata A, Koyama M, Inoue T (2010) Effects of piclozotan (SUN N4057), a partial serotonin 1A receptor agonist, on motor complications induced by repeated administration of levodopa in parkinsonian rats. Eur J Pharmacol 649:218–223PubMed
90.
go back to reference Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, Wictorin K, Keywood C, Shankar B et al (2015) Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain 138(4):963–973PubMedPubMedCentral Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, Wictorin K, Keywood C, Shankar B et al (2015) Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain 138(4):963–973PubMedPubMedCentral
91.
go back to reference Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA (2017) The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: a systematic review. Front Psych 8:42 Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA (2017) The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: a systematic review. Front Psych 8:42
92.
go back to reference Savola J-M, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG et al (2003) Fipamezole (JP-1730) is a potent ?2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 18(8):872–883PubMed Savola J-M, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG et al (2003) Fipamezole (JP-1730) is a potent ?2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 18(8):872–883PubMed
93.
go back to reference LeWitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N et al (2012) Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology 79(2):163–169PubMed LeWitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N et al (2012) Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology 79(2):163–169PubMed
Metadata
Title
Research advances on L-DOPA-induced dyskinesia: from animal models to human disease
Authors
Xi Chen
Yuanyuan Wang
Haifeng Wu
Cheng Cheng
Weidong Le
Publication date
01-08-2020
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 8/2020
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-020-04333-5

Other articles of this Issue 8/2020

Neurological Sciences 8/2020 Go to the issue