Skip to main content
Top
Published in: Neurological Sciences 10/2015

01-10-2015 | Review Article

Linking insulin with Alzheimer’s disease: emergence as type III diabetes

Published in: Neurological Sciences | Issue 10/2015

Login to get access

Abstract

Alzheimer’s disease (AD) has characteristic neuropathological abnormalities including regionalized neurodegeneration, neurofibrillary tangles, amyloid beta (Aβ) deposition, activation of pro-apoptotic genes, and oxidative stress. As the brain functions continue to disintegrate, there is a decline in person’s cognitive abilities, memory, mood, spontaneity, and socializing behavior. A framework that sequentially interlinks all these phenomenons under one event is lacking. Accumulating evidence has indicated the role of insulin deficiency and insulin resistance as mediators of AD neurodegeneration. Herein, we reviewed the evidence stemming from the development of diabetes agent-induced AD animal model. Striking evidence has attributed loss of insulin receptor-bearing neurons to precede or accompany initial stage of AD. This state seems to progress with AD such that, in the terminal stages, it worsens and becomes global. Oxidative stress, tau hyperphosphorylation, APP-Aβ deposition, and impaired glucose and energy metabolism have all been linked to perturbation in insulin/IGF signaling. We conclude that AD could be referred to as “type 3 diabetes”. Moreover, owing to common pathophysiology with diabetes common therapeutic regime could be effective for AD patients.
Literature
1.
go back to reference Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed
3.
go back to reference Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 29:353–356CrossRef Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 29:353–356CrossRef
4.
go back to reference Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M et al (2010) Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimers disease. J Alzheimers Dis 22:405–413PubMed Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M et al (2010) Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimers disease. J Alzheimers Dis 22:405–413PubMed
5.
go back to reference Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147CrossRefPubMed Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147CrossRefPubMed
6.
go back to reference Craft S, Cholerton B, Baker LD (2013) Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis 33:S263–S275PubMed Craft S, Cholerton B, Baker LD (2013) Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis 33:S263–S275PubMed
7.
go back to reference Zhu X, Perry G, Smith MA (2005) Insulin signaling, diabetes mellitus and risk of Alzheimer disease. J Alzheimers Dis 7:81–84PubMed Zhu X, Perry G, Smith MA (2005) Insulin signaling, diabetes mellitus and risk of Alzheimer disease. J Alzheimers Dis 7:81–84PubMed
8.
go back to reference de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61PubMed de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61PubMed
9.
go back to reference Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J Alzheimers Dis 7:63–80PubMed Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J Alzheimers Dis 7:63–80PubMed
10.
go back to reference Craft S (2012) Alzheimer disease: insulin resistance and AD—extending the translational path. Nat Rev Neurol 8:360–362CrossRefPubMed Craft S (2012) Alzheimer disease: insulin resistance and AD—extending the translational path. Nat Rev Neurol 8:360–362CrossRefPubMed
11.
go back to reference Iwangoff P, Armbruster R, Enz A, Meier-Ruge W (1980) Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases. Mech Ageing Dev 14:203–209CrossRefPubMed Iwangoff P, Armbruster R, Enz A, Meier-Ruge W (1980) Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases. Mech Ageing Dev 14:203–209CrossRefPubMed
12.
go back to reference Schiöth HB, Craft S, Brooks SJ, Frey WH II, Benedict C (2012) Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol 46:4–10PubMedCentralCrossRefPubMed Schiöth HB, Craft S, Brooks SJ, Frey WH II, Benedict C (2012) Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol 46:4–10PubMedCentralCrossRefPubMed
13.
go back to reference Havel PJ (2004) Update on adipocyte hormones regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:S143–S151CrossRefPubMed Havel PJ (2004) Update on adipocyte hormones regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:S143–S151CrossRefPubMed
14.
go back to reference Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13:387–414PubMed Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13:387–414PubMed
15.
go back to reference Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829CrossRefPubMed Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829CrossRefPubMed
16.
17.
go back to reference Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296:E581–E591CrossRefPubMed Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296:E581–E591CrossRefPubMed
18.
go back to reference Zhao W-Q, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134CrossRefPubMed Zhao W-Q, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134CrossRefPubMed
19.
go back to reference Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280CrossRefPubMed Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280CrossRefPubMed
20.
go back to reference Nelson TJ, Sun M-K, Hongpaisan J, Alkon DL (2008) Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 585:76–87CrossRefPubMed Nelson TJ, Sun M-K, Hongpaisan J, Alkon DL (2008) Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 585:76–87CrossRefPubMed
21.
go back to reference Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL et al (2006) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32:239–243CrossRefPubMed Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL et al (2006) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32:239–243CrossRefPubMed
22.
go back to reference Prolla TA, Mattson MP (2001) Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci 24:21–31CrossRef Prolla TA, Mattson MP (2001) Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci 24:21–31CrossRef
23.
go back to reference Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105PubMedCentralCrossRefPubMed Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105PubMedCentralCrossRefPubMed
24.
go back to reference Watson G, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 490:97–113CrossRefPubMed Watson G, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 490:97–113CrossRefPubMed
25.
go back to reference Frölich L, Blum-Degen D, Bernstein H-G, Engelsberger S, Humrich J, Laufer S et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438CrossRefPubMed Frölich L, Blum-Degen D, Bernstein H-G, Engelsberger S, Humrich J, Laufer S et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438CrossRefPubMed
26.
go back to reference Suzanne M, Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. J Diabetes Sci Technol 2:1101–1113CrossRef Suzanne M, Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. J Diabetes Sci Technol 2:1101–1113CrossRef
27.
go back to reference Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125CrossRefPubMed Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125CrossRefPubMed
28.
go back to reference Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 42:10–21CrossRefPubMed Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 42:10–21CrossRefPubMed
29.
go back to reference Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7:128–134PubMed Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7:128–134PubMed
30.
go back to reference Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong C-X (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809PubMedCentralCrossRefPubMed Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong C-X (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809PubMedCentralCrossRefPubMed
31.
go back to reference Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease. CNS Drugs 17:27–45CrossRefPubMed Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease. CNS Drugs 17:27–45CrossRefPubMed
32.
go back to reference Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481CrossRefPubMed Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481CrossRefPubMed
33.
go back to reference Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing! Age Ageing 35:336–338CrossRefPubMed Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing! Age Ageing 35:336–338CrossRefPubMed
34.
go back to reference Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol 71:365–376PubMedCentralCrossRefPubMed Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol 71:365–376PubMedCentralCrossRefPubMed
35.
go back to reference De la Monte S, Chen G, Rivera E, Wands J (2003) Neuronal thread protein regulation and interaction with microtubule-associated proteins in SH-Sy5y neuronal cells. Cell Mol Life Sci 60:2679–2691CrossRefPubMed De la Monte S, Chen G, Rivera E, Wands J (2003) Neuronal thread protein regulation and interaction with microtubule-associated proteins in SH-Sy5y neuronal cells. Cell Mol Life Sci 60:2679–2691CrossRefPubMed
36.
go back to reference Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338PubMedCentralCrossRefPubMed Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338PubMedCentralCrossRefPubMed
37.
go back to reference Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268PubMed Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268PubMed
38.
go back to reference Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286PubMed Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286PubMed
39.
go back to reference Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10:264–273PubMedCentralCrossRefPubMed Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10:264–273PubMedCentralCrossRefPubMed
40.
go back to reference Li L, Hölscher C (2007) Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Rev 56:384–402CrossRefPubMed Li L, Hölscher C (2007) Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Rev 56:384–402CrossRefPubMed
41.
go back to reference Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N (2010) Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 37:67–76CrossRefPubMed Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N (2010) Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 37:67–76CrossRefPubMed
42.
go back to reference Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336CrossRefPubMed Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336CrossRefPubMed
43.
go back to reference Zhao W-Q, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ et al (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260CrossRefPubMed Zhao W-Q, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ et al (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260CrossRefPubMed
44.
go back to reference Ma Q-L, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ et al (2009) β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089PubMedCentralCrossRefPubMed Ma Q-L, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ et al (2009) β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089PubMedCentralCrossRefPubMed
45.
go back to reference Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel J-C, Decker H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J Clin Invest 122:1339–1353PubMedCentralCrossRefPubMed Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel J-C, Decker H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J Clin Invest 122:1339–1353PubMedCentralCrossRefPubMed
46.
go back to reference Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF et al (2013) TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 18:831–843CrossRefPubMed Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF et al (2013) TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 18:831–843CrossRefPubMed
47.
go back to reference De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci 106:1971–1976PubMedCentralCrossRefPubMed De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci 106:1971–1976PubMedCentralCrossRefPubMed
48.
49.
go back to reference Negash S, Bennett DA, Wilson RS, Schneider JA, Arnold SE (2011) Cognition and neuropathology in aging: multidimensional perspectives from the Rush Religious Orders Study and Rush Memory and Aging Project. Curr Alzheimer Res 8:336PubMedCentralCrossRefPubMed Negash S, Bennett DA, Wilson RS, Schneider JA, Arnold SE (2011) Cognition and neuropathology in aging: multidimensional perspectives from the Rush Religious Orders Study and Rush Memory and Aging Project. Curr Alzheimer Res 8:336PubMedCentralCrossRefPubMed
50.
go back to reference Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMed Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMed
51.
go back to reference Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedCentralCrossRefPubMed Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedCentralCrossRefPubMed
52.
go back to reference Bjorklund NL, Reese LC, Sadagoparamanujam V, Ghirardi V, Woltjer RL, Taglialatela G (2012) Absence of amyloid beta oligomers at the postsynapse and regulated synaptic Zn2+ in cognitively intact aged individuals with Alzheimer’s disease neuropathology. Mol Neurodegener 7:23PubMedCentralCrossRefPubMed Bjorklund NL, Reese LC, Sadagoparamanujam V, Ghirardi V, Woltjer RL, Taglialatela G (2012) Absence of amyloid beta oligomers at the postsynapse and regulated synaptic Zn2+ in cognitively intact aged individuals with Alzheimer’s disease neuropathology. Mol Neurodegener 7:23PubMedCentralCrossRefPubMed
53.
go back to reference Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci 100:10417–10422PubMedCentralCrossRefPubMed Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci 100:10417–10422PubMedCentralCrossRefPubMed
54.
go back to reference Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M et al (2010) High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24:2716–2726CrossRefPubMed Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M et al (2010) High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24:2716–2726CrossRefPubMed
55.
go back to reference Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345CrossRefPubMed Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345CrossRefPubMed
56.
go back to reference Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112CrossRefPubMed Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112CrossRefPubMed
57.
go back to reference Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807CrossRefPubMed Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807CrossRefPubMed
58.
go back to reference Jurgensen S, Antonio LL, Mussi GE, Brito-Moreira J, Bomfim TR, De Felice FG et al (2011) Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 286:3270–3276PubMedCentralCrossRefPubMed Jurgensen S, Antonio LL, Mussi GE, Brito-Moreira J, Bomfim TR, De Felice FG et al (2011) Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 286:3270–3276PubMedCentralCrossRefPubMed
59.
go back to reference De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29:1334–1347PubMedCentralCrossRefPubMed De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29:1334–1347PubMedCentralCrossRefPubMed
60.
go back to reference De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST et al (2007) Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601CrossRefPubMed De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST et al (2007) Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601CrossRefPubMed
61.
go back to reference Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243CrossRefPubMed Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243CrossRefPubMed
62.
go back to reference Klein WL, Krafft GA, Zhao W-Q (2011) Compositions and methods for the enhancement of soluble amyloid beta oligomer (ADDL) uptake and clearance. Google Patents Klein WL, Krafft GA, Zhao W-Q (2011) Compositions and methods for the enhancement of soluble amyloid beta oligomer (ADDL) uptake and clearance. Google Patents
63.
go back to reference Craft S (2006) Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 20:298–301CrossRefPubMed Craft S (2006) Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 20:298–301CrossRefPubMed
64.
go back to reference de la Monte SM, Longato L, Tong M, Wands JR (2009) Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs 10:1049–1060PubMed de la Monte SM, Longato L, Tong M, Wands JR (2009) Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs 10:1049–1060PubMed
65.
go back to reference de la Monte SM, Tong M (2009) Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 17:817–825PubMedCentralPubMed de la Monte SM, Tong M (2009) Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 17:817–825PubMedCentralPubMed
66.
go back to reference Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33PubMed Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33PubMed
67.
go back to reference Duelli R, Schröck H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12:737–743CrossRefPubMed Duelli R, Schröck H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12:737–743CrossRefPubMed
68.
go back to reference de la Monte SM, Tong M, Lester-Coll N, Plater J, Michael Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109PubMed de la Monte SM, Tong M, Lester-Coll N, Plater J, Michael Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109PubMed
69.
go back to reference Tong M, Longato L, de la Monte SM (2010) Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 10:4PubMedCentralCrossRefPubMed Tong M, Longato L, de la Monte SM (2010) Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 10:4PubMedCentralCrossRefPubMed
70.
go back to reference Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z et al (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18:902–904PubMed Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z et al (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18:902–904PubMed
71.
go back to reference Gallagher J, Minogue A, Lynch M (2012) Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Aβ accumulation and microglial activation. Neurodegener Dis 11:33–41CrossRefPubMed Gallagher J, Minogue A, Lynch M (2012) Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Aβ accumulation and microglial activation. Neurodegener Dis 11:33–41CrossRefPubMed
72.
go back to reference Watson G, Bernhardt T, Reger MA, Cholerton BA, Baker LD, Peskind ER et al (2006) Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging 27:38–41CrossRefPubMed Watson G, Bernhardt T, Reger MA, Cholerton BA, Baker LD, Peskind ER et al (2006) Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging 27:38–41CrossRefPubMed
73.
go back to reference Reger M, Watson G, Green P, Wilkinson C, Baker L, Cholerton B et al (2008) Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 70:440–448CrossRefPubMed Reger M, Watson G, Green P, Wilkinson C, Baker L, Cholerton B et al (2008) Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 70:440–448CrossRefPubMed
74.
go back to reference Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW et al (2010) GLP-1 receptor stimulation reduces amyloid-β peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219PubMedCentralPubMed Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW et al (2010) GLP-1 receptor stimulation reduces amyloid-β peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219PubMedCentralPubMed
Metadata
Title
Linking insulin with Alzheimer’s disease: emergence as type III diabetes
Publication date
01-10-2015
Published in
Neurological Sciences / Issue 10/2015
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-015-2352-5

Other articles of this Issue 10/2015

Neurological Sciences 10/2015 Go to the issue