Skip to main content
Top
Published in: Neurological Sciences 4/2015

01-04-2015 | Original Article

Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats

Authors: Samira Rahnama, Zahra Rabiei, Zahra Alibabaei, Shiva Mokhtari, Mahmoud Rafieian-kopaei, Fatemeh Deris

Published in: Neurological Sciences | Issue 4/2015

Login to get access

Abstract

Alzheimer’s disease (AD) is a progressive neurological disorder that mostly affects the elderly population. Learning and memory impairment as the most characteristic manifestation of dementia could be induced chemically by scopolamine, a cholinergic antagonist. Cholinergic neurotransmission mediated brain oxidative stress. Citrus aurantium (CA) has traditionally been used for the treatment of insomnia, anxiety and epilepsy. The present study was designed to investigate the effect of Citrus aurantium on scopolamine-induced learning and memory deficit in rats. Forty-two Wistar rats were divided into six equal groups. (1) Control (received saline), (2) SCOP (scopolamine at a dose of 1 mg/kg for 15 days), (3) and (4) SCOP + CA (scopolamine and CA extract at doses of 300 and 600 mg/kg per day for 15 days), (5) and (6) intact groups (CA extract at 300 and 600 mg/kg per day for 15 days, respectively). Administration of CA flower extract significantly restored memory and learning impairments induced by scopolamine in the passive avoidance test and also reduced escape latency during trial sessions in the Morris water maze test. Citrus aurantium flower extract significantly decreased the serum malondialdehyde (MDA) levels. Citrus aurantium flower extract has repairing effects on memory and behavioral disorders produced by scopolamine and may have beneficial effects in the treatment of AD.
Literature
1.
go back to reference Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11(5):456–467CrossRefPubMed Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11(5):456–467CrossRefPubMed
2.
go back to reference Nie K, Yu J-C, Fu Y, Cheng H-Y, Chen F-Y, Qu Y et al (2009) Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus. Biochem Biophys Res 378(1):103–107CrossRef Nie K, Yu J-C, Fu Y, Cheng H-Y, Chen F-Y, Qu Y et al (2009) Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus. Biochem Biophys Res 378(1):103–107CrossRef
3.
go back to reference Small G, Bullock R (2011) Defining optimal treatment with cholinesterase inhibitors in Alzheimer’s disease. Alzheimers Dement 7(2):177–184CrossRefPubMed Small G, Bullock R (2011) Defining optimal treatment with cholinesterase inhibitors in Alzheimer’s disease. Alzheimers Dement 7(2):177–184CrossRefPubMed
4.
go back to reference Rezvani AH, Cauley M, Sexton H, Xiao Y, Brown ML, Paige MA et al (2011) Sazetidine-A, a selective α4β2 nicotinic acetylcholine receptor ligand: effects on dizocilpine and scopolamine-induced attentional impairments in female Sprague-Dawley rats. Psychopharmacology 215(4):621–630CrossRefPubMed Rezvani AH, Cauley M, Sexton H, Xiao Y, Brown ML, Paige MA et al (2011) Sazetidine-A, a selective α4β2 nicotinic acetylcholine receptor ligand: effects on dizocilpine and scopolamine-induced attentional impairments in female Sprague-Dawley rats. Psychopharmacology 215(4):621–630CrossRefPubMed
5.
go back to reference Hashimoto M, Hashimoto T, Kuriyama K (1991) Protective effect of WEB 1881 FU on AF64A (ethylcholine aziridinium ion)-induced impairment of hippocampal cholinergic neurons and learning acquisition. Eur J Pharmacol 209(1):9–14CrossRefPubMed Hashimoto M, Hashimoto T, Kuriyama K (1991) Protective effect of WEB 1881 FU on AF64A (ethylcholine aziridinium ion)-induced impairment of hippocampal cholinergic neurons and learning acquisition. Eur J Pharmacol 209(1):9–14CrossRefPubMed
6.
go back to reference Kvaltinova Z, Juranek I, Machova J, Stolc S (1993) Effect of oxidative stress on (3H) N-methylscopolamine binding and production of thiobarbituric acid reactive substances in rat cerebral cortex membranes. Gen Physiol Biophys 12:155–164PubMed Kvaltinova Z, Juranek I, Machova J, Stolc S (1993) Effect of oxidative stress on (3H) N-methylscopolamine binding and production of thiobarbituric acid reactive substances in rat cerebral cortex membranes. Gen Physiol Biophys 12:155–164PubMed
7.
go back to reference Vasco VRL (2012) Phosphoinositide pathway and the signal transduction network in neural development. J Neurosci Res 28(6):789–800 Vasco VRL (2012) Phosphoinositide pathway and the signal transduction network in neural development. J Neurosci Res 28(6):789–800
8.
go back to reference Floyd RA, Hensley K (2002) Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23(5):795–807CrossRefPubMed Floyd RA, Hensley K (2002) Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23(5):795–807CrossRefPubMed
9.
go back to reference Zhang Z-J (2004) Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 75(14):1659–1699CrossRefPubMed Zhang Z-J (2004) Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 75(14):1659–1699CrossRefPubMed
10.
go back to reference Akhlaghi M, Shabanian G, Rafieian-Kopaei M, Parvin N, Saadat M, Akhlaghi M (2011) Citrus aurantium blossom and preoperative anxiety. Rev Bras Anestesiol 61(6):702–712CrossRefPubMed Akhlaghi M, Shabanian G, Rafieian-Kopaei M, Parvin N, Saadat M, Akhlaghi M (2011) Citrus aurantium blossom and preoperative anxiety. Rev Bras Anestesiol 61(6):702–712CrossRefPubMed
11.
go back to reference Pereira R, Andrades N, Paulino N, Sawaya A, Eberlin M, Marcucci M et al (2011) Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 12(7):1352–1366CrossRef Pereira R, Andrades N, Paulino N, Sawaya A, Eberlin M, Marcucci M et al (2011) Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 12(7):1352–1366CrossRef
12.
go back to reference Tundis R, Loizzo MR, Bonesi M, Menichini F, Mastellone V, Colica C et al (2012) Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia swingle, C. aurantium L., and C. bergamia Risso and Poit. Peel essential oils. J Food Sci 77(1):40–46CrossRef Tundis R, Loizzo MR, Bonesi M, Menichini F, Mastellone V, Colica C et al (2012) Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia swingle, C. aurantium L., and C. bergamia Risso and Poit. Peel essential oils. J Food Sci 77(1):40–46CrossRef
13.
go back to reference Jazayeri B, Amanlou A, Ghanadian N, Pasalar P, Amanlou M (2014) A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. DARU J PharmSci 22:17CrossRef Jazayeri B, Amanlou A, Ghanadian N, Pasalar P, Amanlou M (2014) A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. DARU J PharmSci 22:17CrossRef
14.
go back to reference Rabiei Z, Rafieian-kopaei M, Heidarian E, Saghaei E, Mokhtari S (2013) Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus basalis of meynert in rat. Neurochem Res 36:1–8 Rabiei Z, Rafieian-kopaei M, Heidarian E, Saghaei E, Mokhtari S (2013) Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus basalis of meynert in rat. Neurochem Res 36:1–8
15.
go back to reference Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60CrossRefPubMed Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60CrossRefPubMed
16.
go back to reference Ellman GL, Courtney KD, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7(2):88–95CrossRefPubMed Ellman GL, Courtney KD, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7(2):88–95CrossRefPubMed
17.
go back to reference Ballard CG, Greig NH, Guillozet-Bongaarts AL, Enz A, Darvesh S (2005) Cholinesterases: roles in the brain during health and disease. Curr Alzheimer Res 2(3):307–318CrossRefPubMed Ballard CG, Greig NH, Guillozet-Bongaarts AL, Enz A, Darvesh S (2005) Cholinesterases: roles in the brain during health and disease. Curr Alzheimer Res 2(3):307–318CrossRefPubMed
18.
go back to reference Yamada N, Hattori A, Hayashi T, Nishikawa T, Fukuda H, Fujino T (2004) Improvement of scopolamine-induced memory impairment by Z-ajoene in the water maze in mice. Pharmacol Biochem Behav 78:787–791CrossRefPubMed Yamada N, Hattori A, Hayashi T, Nishikawa T, Fukuda H, Fujino T (2004) Improvement of scopolamine-induced memory impairment by Z-ajoene in the water maze in mice. Pharmacol Biochem Behav 78:787–791CrossRefPubMed
19.
go back to reference Lorenzini CA, Baldi E, Bucherelli C, Sacchetti B, Tassoni G (1996) Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat’s passive avoidance response: a tetrodotoxin functional inactivation study. Brain Res 730(1–2):32–39CrossRefPubMed Lorenzini CA, Baldi E, Bucherelli C, Sacchetti B, Tassoni G (1996) Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat’s passive avoidance response: a tetrodotoxin functional inactivation study. Brain Res 730(1–2):32–39CrossRefPubMed
20.
go back to reference Nakajima A, Yamakuni T, Matsuzaki K, Nakata N, Onozuka H, Yokosuka A et al (2007) Nobiletin, a citrus flavonoid, reverses learning impairment associated with N-methyl-D-aspartate receptor antagonism by activation of extracellular signal-regulated kinase signaling. J Pharm Exp Ther 321(2):784–790CrossRef Nakajima A, Yamakuni T, Matsuzaki K, Nakata N, Onozuka H, Yokosuka A et al (2007) Nobiletin, a citrus flavonoid, reverses learning impairment associated with N-methyl-D-aspartate receptor antagonism by activation of extracellular signal-regulated kinase signaling. J Pharm Exp Ther 321(2):784–790CrossRef
21.
go back to reference Pereira R, Andrades N, Paulino N, Sawaya A, Eberlin M, Marcucci M et al (2007) Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 12(7):1352–1366CrossRefPubMed Pereira R, Andrades N, Paulino N, Sawaya A, Eberlin M, Marcucci M et al (2007) Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules 12(7):1352–1366CrossRefPubMed
22.
go back to reference Carvalho-Freitas MIR, Costa M (2002) Anxiolytic and sedative effects of extracts and essential oil from Citrus aurantium L. Biol Pharm Bull 25(12):1629–1633CrossRefPubMed Carvalho-Freitas MIR, Costa M (2002) Anxiolytic and sedative effects of extracts and essential oil from Citrus aurantium L. Biol Pharm Bull 25(12):1629–1633CrossRefPubMed
23.
go back to reference Vazquez J, Baghdoyan HA (2003) Muscarinic and GABAA receptors modulate acetylcholine release in feline basal forebrain. Eur J Neurosci 17:249–259CrossRefPubMed Vazquez J, Baghdoyan HA (2003) Muscarinic and GABAA receptors modulate acetylcholine release in feline basal forebrain. Eur J Neurosci 17:249–259CrossRefPubMed
Metadata
Title
Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats
Authors
Samira Rahnama
Zahra Rabiei
Zahra Alibabaei
Shiva Mokhtari
Mahmoud Rafieian-kopaei
Fatemeh Deris
Publication date
01-04-2015
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 4/2015
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-014-1991-2

Other articles of this Issue 4/2015

Neurological Sciences 4/2015 Go to the issue