Skip to main content
Top
Published in: Neurological Sciences 10/2013

01-10-2013 | Review Article

Insulin resistance: an emerging link in Alzheimer’s disease

Authors: Bikash Medhi, Mrinmoy Chakrabarty

Published in: Neurological Sciences | Issue 10/2013

Login to get access

Abstract

Relentless progression of Alzheimer’s disease (AD) poses a grave situation for the biomedical community to tackle. Agents starting as hot favorites in clinical trials have failed in later stages and it is time we reconsidered our approaches to intervene the disease. Quite some interesting work in the last decade has introduced a new school of thought which factors in neuronal glycemic imbalance as a major component for the development of AD. Insulin resistance in the brain has brought forward subsequent sequelae which might work towards amyloid accretion and/or tau hyperphosphorylation. It is also pointed out that insulin works by distributing iron to neuronal tissue and an insulin resistant state throws it off gear leading to iron overloading of neurons which is ultimately detrimental. A relatively recent investigation finds the role of c-Jun-N-terminal kinase (JNK3) in AD which also seems to bear a link with insulin resistance.
Literature
1.
go back to reference Brookmeyer R, Jhonson E, Zieglr-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191PubMedCrossRef Brookmeyer R, Jhonson E, Zieglr-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191PubMedCrossRef
2.
3.
go back to reference Burns JM, Donnelly JE, Anderson HS, Mayo MS, Spencer-Gardner L, Thomas G (2007) Peripheral insulin and brain structure in early Alzheimer’s disease. Neurology 69:1094–1104PubMedCrossRef Burns JM, Donnelly JE, Anderson HS, Mayo MS, Spencer-Gardner L, Thomas G (2007) Peripheral insulin and brain structure in early Alzheimer’s disease. Neurology 69:1094–1104PubMedCrossRef
4.
go back to reference Erol A (2008) An integrated and unifying hypothesis for the metabolic basis of sporadic Alzheimer’s disease. J Alzheimers Dis 13:241–253PubMed Erol A (2008) An integrated and unifying hypothesis for the metabolic basis of sporadic Alzheimer’s disease. J Alzheimers Dis 13:241–253PubMed
5.
go back to reference Hopkins DFC, Williams G (1997) Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med 14:1044–1050PubMedCrossRef Hopkins DFC, Williams G (1997) Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med 14:1044–1050PubMedCrossRef
6.
go back to reference Adamo M, LeRoith D, Simon J, Roth J (1989) Effect of altered nutritional states on insulin receptors. Annu Rev Nutr 8:149–166CrossRef Adamo M, LeRoith D, Simon J, Roth J (1989) Effect of altered nutritional states on insulin receptors. Annu Rev Nutr 8:149–166CrossRef
7.
go back to reference Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocrinol Rev 26:916–943CrossRef Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocrinol Rev 26:916–943CrossRef
8.
go back to reference Chiu SL, Cline HT (2010) Insulin receptor signalling in the development of neuronal structure and function. Neural Dev 5:1–18CrossRef Chiu SL, Cline HT (2010) Insulin receptor signalling in the development of neuronal structure and function. Neural Dev 5:1–18CrossRef
9.
go back to reference Zhao W, Wu X, Xie H, Ke Y, Yung WH (2010) Permissive role of insulin in the expression of long-term potentiation in the hippocampus of immature rats. Neurosignals 18:236–245PubMedCrossRef Zhao W, Wu X, Xie H, Ke Y, Yung WH (2010) Permissive role of insulin in the expression of long-term potentiation in the hippocampus of immature rats. Neurosignals 18:236–245PubMedCrossRef
10.
go back to reference Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP, Wang ZY (2010) Insulin deficiency exacerbates cerebral amyloidosis and behavioural deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 2:46CrossRef Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP, Wang ZY (2010) Insulin deficiency exacerbates cerebral amyloidosis and behavioural deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 2:46CrossRef
11.
go back to reference Kahn CR, Suzuki R (2010) Diabetes, insulin and Alzheimer’s disease. In: Craft S, Christen Y (eds) Research and perspective in Alzheimer’s disease. Springer, Heidelberg, pp 1–21 Kahn CR, Suzuki R (2010) Diabetes, insulin and Alzheimer’s disease. In: Craft S, Christen Y (eds) Research and perspective in Alzheimer’s disease. Springer, Heidelberg, pp 1–21
12.
go back to reference Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225:54–62PubMedCrossRef Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225:54–62PubMedCrossRef
13.
go back to reference Gasparini L, Netzer WJ, Greengard P, Xu H (2002) Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 23:288–293PubMedCrossRef Gasparini L, Netzer WJ, Greengard P, Xu H (2002) Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 23:288–293PubMedCrossRef
14.
go back to reference Johnston AM, Pirola L, Van Obberghen E (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546:32–36PubMedCrossRef Johnston AM, Pirola L, Van Obberghen E (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546:32–36PubMedCrossRef
15.
go back to reference Van der Heide LP, Ramakers GMJ, Smidt MP (2006) Insulin signalling in the central nervous system: learning to survive. Prog Neurobiol 79:205–221PubMedCrossRef Van der Heide LP, Ramakers GMJ, Smidt MP (2006) Insulin signalling in the central nervous system: learning to survive. Prog Neurobiol 79:205–221PubMedCrossRef
16.
go back to reference Johnston AM, Pirola L, Van Obberghen E (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546:32–36PubMedCrossRef Johnston AM, Pirola L, Van Obberghen E (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546:32–36PubMedCrossRef
17.
go back to reference McEwen BS, Reagan LP (2004) Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 19:13–24CrossRef McEwen BS, Reagan LP (2004) Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 19:13–24CrossRef
18.
go back to reference Cross DAE, Culbert AA, Chalmers KA, Facci L, Skaper SD, Reith AD (2001) Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem 77:94–102PubMedCrossRef Cross DAE, Culbert AA, Chalmers KA, Facci L, Skaper SD, Reith AD (2001) Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem 77:94–102PubMedCrossRef
19.
go back to reference Phiel Christopher J, Wilson Christina A, Lee Virginia M-Y, Klein Peter S (2011) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423:435–439CrossRef Phiel Christopher J, Wilson Christina A, Lee Virginia M-Y, Klein Peter S (2011) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423:435–439CrossRef
20.
go back to reference Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta amyloid precursor protein by insulin reduces intra neuronal beta amyloid and requires mitogen activated protein kinase signalling. J Neurosci 21:2561–2570PubMed Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta amyloid precursor protein by insulin reduces intra neuronal beta amyloid and requires mitogen activated protein kinase signalling. J Neurosci 21:2561–2570PubMed
21.
go back to reference Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ (2005) Insulin receptor signalling in long-term memory consolidation following spatial learning. Learn Mem 12:646–655PubMedCrossRef Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ (2005) Insulin receptor signalling in long-term memory consolidation following spatial learning. Learn Mem 12:646–655PubMedCrossRef
22.
go back to reference Sheng M, Kim MJ (2002) Postsynaptic signalling and plasticity mechanisms. Science 25:776–780CrossRef Sheng M, Kim MJ (2002) Postsynaptic signalling and plasticity mechanisms. Science 25:776–780CrossRef
23.
go back to reference Park CR (2001) Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev 25:311–323PubMedCrossRef Park CR (2001) Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev 25:311–323PubMedCrossRef
24.
go back to reference Zhao WQ, Chen H, Quon MJ, Alkon DL (2004) Insulin and insulin receptors in experimental models of learning and memory. Eur J Pharmacol 490:71–81PubMedCrossRef Zhao WQ, Chen H, Quon MJ, Alkon DL (2004) Insulin and insulin receptors in experimental models of learning and memory. Eur J Pharmacol 490:71–81PubMedCrossRef
25.
go back to reference Katakam PV, Tulbert CD, Snipes JA, Erdos B, Miller AW, Busija DW (2005) Impaired insulin induced vasodilatation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species. Am J Physiol Heart Circ Physiol 288:H854–H860PubMedCrossRef Katakam PV, Tulbert CD, Snipes JA, Erdos B, Miller AW, Busija DW (2005) Impaired insulin induced vasodilatation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species. Am J Physiol Heart Circ Physiol 288:H854–H860PubMedCrossRef
26.
go back to reference Craft S (2009) The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66:300–305PubMedCrossRef Craft S (2009) The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66:300–305PubMedCrossRef
27.
go back to reference Zao WQ, Dl Alkon (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134CrossRef Zao WQ, Dl Alkon (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134CrossRef
28.
go back to reference Dou JJ, Chen M, Dufour F, Alkon DL, Zao WQ (2005) Insulin receptor signalling in long term memory consolidation following spatial learning. Learn Mem 12:646–655PubMedCrossRef Dou JJ, Chen M, Dufour F, Alkon DL, Zao WQ (2005) Insulin receptor signalling in long term memory consolidation following spatial learning. Learn Mem 12:646–655PubMedCrossRef
29.
go back to reference Scautam D, Surjo D, Ueki K, Baudler S, Schubert D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Nat Acad Sci 101:3100–3105CrossRef Scautam D, Surjo D, Ueki K, Baudler S, Schubert D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Nat Acad Sci 101:3100–3105CrossRef
30.
go back to reference Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8:228–236PubMedCrossRef Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8:228–236PubMedCrossRef
31.
32.
go back to reference Rönnemaa E, Zethelius B, Sundelöf J, Sundström J, Degerman-Gunnarsson M, Berne C, Lannfelt L, Kilander L (2008) Impaired insulin secretion increases the risk of Alzheimer disease. Neurology 71:1065–1071PubMedCrossRef Rönnemaa E, Zethelius B, Sundelöf J, Sundström J, Degerman-Gunnarsson M, Berne C, Lannfelt L, Kilander L (2008) Impaired insulin secretion increases the risk of Alzheimer disease. Neurology 71:1065–1071PubMedCrossRef
33.
go back to reference Hassing LB, Hofer SM, Nilsson SE, Berg S, Pedersen NL, McClearn G, Johansson B (2004) Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: evidence from a longitudinal study. Age Ageing 33:355–361PubMedCrossRef Hassing LB, Hofer SM, Nilsson SE, Berg S, Pedersen NL, McClearn G, Johansson B (2004) Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: evidence from a longitudinal study. Age Ageing 33:355–361PubMedCrossRef
34.
go back to reference Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV (2009) Hypoglycaemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301:1565–1572PubMedCrossRef Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV (2009) Hypoglycaemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301:1565–1572PubMedCrossRef
35.
go back to reference Weiss R, Dufour S, Taksali SE, Tambortlane WV, Petersen KF, Bonadonna RC, Boselli L, Barbetta G, Alle K, Rife F, Savoye M, Dziura J, Sherwin R, Shulman R, Caprio S (2003) Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 362:951–957PubMedCrossRef Weiss R, Dufour S, Taksali SE, Tambortlane WV, Petersen KF, Bonadonna RC, Boselli L, Barbetta G, Alle K, Rife F, Savoye M, Dziura J, Sherwin R, Shulman R, Caprio S (2003) Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 362:951–957PubMedCrossRef
36.
go back to reference Small GW, Ercoli LM, Silverman DH et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci 97(11):6037–6042PubMedCrossRef Small GW, Ercoli LM, Silverman DH et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci 97(11):6037–6042PubMedCrossRef
37.
go back to reference Rasgon NL, Kenna HA, Wroolie TE et al (2011) Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging 32:1942–1948PubMedCrossRef Rasgon NL, Kenna HA, Wroolie TE et al (2011) Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging 32:1942–1948PubMedCrossRef
38.
go back to reference Forlich L, Blum- Degen D, Bernstein HG, Engelsberger S, Humrich J, Lauffer S, Muschner D et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438CrossRef Forlich L, Blum- Degen D, Bernstein HG, Engelsberger S, Humrich J, Lauffer S, Muschner D et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438CrossRef
39.
go back to reference Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233PubMedCrossRef Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233PubMedCrossRef
40.
go back to reference Unoki H, Yamagishi S (2008) Advanced glycation end products and insulin resistance. Curr Pharm Des 14:987–989PubMedCrossRef Unoki H, Yamagishi S (2008) Advanced glycation end products and insulin resistance. Curr Pharm Des 14:987–989PubMedCrossRef
41.
go back to reference Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774PubMedCrossRef Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774PubMedCrossRef
42.
go back to reference Pahnke J, Walker LC, Scheffler K, Krohn M (2009) Alzheimer’s disease and blood-brain barrier function—why have anti-β-amyloid therapies failed to prevent dementia progression? Neurosci Biobehav Rev 2009(33):1099–1108CrossRef Pahnke J, Walker LC, Scheffler K, Krohn M (2009) Alzheimer’s disease and blood-brain barrier function—why have anti-β-amyloid therapies failed to prevent dementia progression? Neurosci Biobehav Rev 2009(33):1099–1108CrossRef
43.
go back to reference Vogelgesang S et al (2002) Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541PubMedCrossRef Vogelgesang S et al (2002) Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541PubMedCrossRef
44.
go back to reference Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB et al (2005) P-glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290PubMedCrossRef Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB et al (2005) P-glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290PubMedCrossRef
45.
go back to reference Ling S, Zou J, Rudd JA, Hu Z, Fang M (2011) The recent approaches of therapeutic approaches against Aβ for the treatment of Alzheimer’s disease. Anat Rec 294:1307–1318CrossRef Ling S, Zou J, Rudd JA, Hu Z, Fang M (2011) The recent approaches of therapeutic approaches against Aβ for the treatment of Alzheimer’s disease. Anat Rec 294:1307–1318CrossRef
46.
go back to reference Carter TL, Pedrini S, Ghiso J, Ehrlich ME, Gandy S (2006) Brain neprilysin activity and susceptibility to transgene-induced Alzheimer amyloidosis. Neurosci Lett 392:235–239PubMedCrossRef Carter TL, Pedrini S, Ghiso J, Ehrlich ME, Gandy S (2006) Brain neprilysin activity and susceptibility to transgene-induced Alzheimer amyloidosis. Neurosci Lett 392:235–239PubMedCrossRef
47.
go back to reference Hellstrom-Lindahl E, Ravid R, Nordberg A (2006) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with Aβ levels. Neurobiol Aging 29(2):210–221PubMedCrossRef Hellstrom-Lindahl E, Ravid R, Nordberg A (2006) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with Aβ levels. Neurobiol Aging 29(2):210–221PubMedCrossRef
48.
go back to reference Devi L, Alldred Melissa J, Ginsberg SD, Ohno M (2012) Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS ONE 7:e32792PubMedCrossRef Devi L, Alldred Melissa J, Ginsberg SD, Ohno M (2012) Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS ONE 7:e32792PubMedCrossRef
49.
go back to reference Gong CX, Liu F, Grundke-iqbal I, Iqbal K (2006) Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. J Alzheimer’s Dis 9(1):1–12 Gong CX, Liu F, Grundke-iqbal I, Iqbal K (2006) Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. J Alzheimer’s Dis 9(1):1–12
50.
go back to reference Goto I, Taniwaki T, Hosokawa S, Otsuka M, Ichiya Y, Ichimiya A (1993) Positron emission tomographic (PET) studies in dementia. J Neurol Sci 114:1–6PubMedCrossRef Goto I, Taniwaki T, Hosokawa S, Otsuka M, Ichiya Y, Ichimiya A (1993) Positron emission tomographic (PET) studies in dementia. J Neurol Sci 114:1–6PubMedCrossRef
51.
go back to reference Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R (2001) A gene expression profile of Alzheimer’s disease. DNA Cell Biol 20:683–695PubMedCrossRef Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R (2001) A gene expression profile of Alzheimer’s disease. DNA Cell Biol 20:683–695PubMedCrossRef
52.
go back to reference Gerozissis K (2003) Brain insulin: regulation, mechanisms of action, and functions. Cell Mol Neurobiol 23(4–5):873–874CrossRef Gerozissis K (2003) Brain insulin: regulation, mechanisms of action, and functions. Cell Mol Neurobiol 23(4–5):873–874CrossRef
53.
go back to reference Ishiguro K, Shiratsuchi A, Sato S et al (1993) Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325:167–172PubMedCrossRef Ishiguro K, Shiratsuchi A, Sato S et al (1993) Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325:167–172PubMedCrossRef
54.
go back to reference Hong M, Lee VMY (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553PubMedCrossRef Hong M, Lee VMY (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553PubMedCrossRef
55.
go back to reference Wells L, Whelan SA, Hart GW (2003) O-GlcNAc: a regulatory post-translational modification. Biochem Biophys Res Commun 302:435–441PubMedCrossRef Wells L, Whelan SA, Hart GW (2003) O-GlcNAc: a regulatory post-translational modification. Biochem Biophys Res Commun 302:435–441PubMedCrossRef
56.
go back to reference Gong CX, Liu F, Iqbal IG, Iqbal K (2006) Impaired brain glucose metabolism leads to Alzheimer’s neurofibrillary neurodegeneration through a decrease in Tau-O-GlcNacylation. J Alzheimers Dis 9:1–12PubMed Gong CX, Liu F, Iqbal IG, Iqbal K (2006) Impaired brain glucose metabolism leads to Alzheimer’s neurofibrillary neurodegeneration through a decrease in Tau-O-GlcNacylation. J Alzheimers Dis 9:1–12PubMed
57.
go back to reference Jahanshad N, Kohannim O, Hibar DP, Stein JL, McMahon KL, de Zubicaray GI, Medland SE, Montgomery GW, Whitfield JB, Martin NG, Wright MJ, Toga AW, Thompson PM (2012) Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc Natl Acad Sci USA 3(109):E851–E859CrossRef Jahanshad N, Kohannim O, Hibar DP, Stein JL, McMahon KL, de Zubicaray GI, Medland SE, Montgomery GW, Whitfield JB, Martin NG, Wright MJ, Toga AW, Thompson PM (2012) Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc Natl Acad Sci USA 3(109):E851–E859CrossRef
58.
go back to reference Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83PubMedCrossRef Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83PubMedCrossRef
59.
go back to reference O’Donnell MJ, Watson J, Martin P, Chapman C, Barnett AH (1991) Transferrinuria in type 2 diabetes: the effect of glycaemic control. Ann Clin Biochem 28:174–178PubMed O’Donnell MJ, Watson J, Martin P, Chapman C, Barnett AH (1991) Transferrinuria in type 2 diabetes: the effect of glycaemic control. Ann Clin Biochem 28:174–178PubMed
60.
go back to reference Swaminathan S, Alam MG, Fonseca VA, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30:1926–1933PubMedCrossRef Swaminathan S, Alam MG, Fonseca VA, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30:1926–1933PubMedCrossRef
61.
go back to reference Fernández-Real JM (2008) Insulin resistance and atherosclerosis. The impact of oxidative stress on endothelial function. Rev Esp Cardiol 8(Suppl C):42–49 Fernández-Real JM (2008) Insulin resistance and atherosclerosis. The impact of oxidative stress on endothelial function. Rev Esp Cardiol 8(Suppl C):42–49
62.
go back to reference Tanner LI, Lienhard GE (1987) Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalization. J Biol Chem 262:8975–8980PubMed Tanner LI, Lienhard GE (1987) Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalization. J Biol Chem 262:8975–8980PubMed
63.
go back to reference Jehn ML, Guallar E, Clark JM, Couper D, Duncan BB, Ballantyne CM et al (2007) A prospective study of plasma ferritin level and incident diabetes. Am J Epidemiol 165:1047–1054PubMedCrossRef Jehn ML, Guallar E, Clark JM, Couper D, Duncan BB, Ballantyne CM et al (2007) A prospective study of plasma ferritin level and incident diabetes. Am J Epidemiol 165:1047–1054PubMedCrossRef
64.
go back to reference Choi KM, Lee KW, Kim HW et al (2005) Association among serum ferritin, alanine aminotransferase levels, and metabolic syndrome in Korean postmenopausal women. Metabolism 54:1510–1514PubMedCrossRef Choi KM, Lee KW, Kim HW et al (2005) Association among serum ferritin, alanine aminotransferase levels, and metabolic syndrome in Korean postmenopausal women. Metabolism 54:1510–1514PubMedCrossRef
65.
go back to reference Abdelli S, Abderrahmani A, Hering BJ, Beckmann JS, Bonny C (2007) The c-Jun N-terminal kinase JNK participates in cytokine- and isolation stress-induced rat pancreatic islet apoptosis. Diabetologia 50:1660–1669PubMedCrossRef Abdelli S, Abderrahmani A, Hering BJ, Beckmann JS, Bonny C (2007) The c-Jun N-terminal kinase JNK participates in cytokine- and isolation stress-induced rat pancreatic islet apoptosis. Diabetologia 50:1660–1669PubMedCrossRef
66.
go back to reference Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770PubMed Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770PubMed
67.
68.
go back to reference Fowler AE, da Silva NF, Burman C, Harte AL, McTernan PG, Kumar S (2004) Increased C-jun N terminal kinase (JNK) activity may link insulin resistance and inflammation in human central obesity. Endocr Abstr 7:49 Fowler AE, da Silva NF, Burman C, Harte AL, McTernan PG, Kumar S (2004) Increased C-jun N terminal kinase (JNK) activity may link insulin resistance and inflammation in human central obesity. Endocr Abstr 7:49
69.
go back to reference Yoon SO, Park DJ, Ryu JC, Ozer HC, Tep C, Shin YJ et al (2012) JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75:824–837PubMedCrossRef Yoon SO, Park DJ, Ryu JC, Ozer HC, Tep C, Shin YJ et al (2012) JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75:824–837PubMedCrossRef
70.
go back to reference Duarte AI, Moreira PI, Oliveira CR. (2012) Insulin in CNS: more than just a peripheral hormone. J Aging Res 1–21 Duarte AI, Moreira PI, Oliveira CR. (2012) Insulin in CNS: more than just a peripheral hormone. J Aging Res 1–21
71.
go back to reference Salkovic Petrisic M, Laekovic Z (2003) Intracerebroventricular administration of betacytotoxics alters expression of brain monoamine transporter genes. J Neural Transm 110:15–29PubMed Salkovic Petrisic M, Laekovic Z (2003) Intracerebroventricular administration of betacytotoxics alters expression of brain monoamine transporter genes. J Neural Transm 110:15–29PubMed
72.
go back to reference Talbot K, Wang HY, Kazi M, Han LY, Bakshi KP, Stucky A, Rl Fuino (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF 1 resistance, IRS 1 dysfunction, cognitive decline. J Clin Investig 122:1316–1338PubMedCrossRef Talbot K, Wang HY, Kazi M, Han LY, Bakshi KP, Stucky A, Rl Fuino (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF 1 resistance, IRS 1 dysfunction, cognitive decline. J Clin Investig 122:1316–1338PubMedCrossRef
Metadata
Title
Insulin resistance: an emerging link in Alzheimer’s disease
Authors
Bikash Medhi
Mrinmoy Chakrabarty
Publication date
01-10-2013
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 10/2013
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-013-1454-1

Other articles of this Issue 10/2013

Neurological Sciences 10/2013 Go to the issue