Skip to main content
Top
Published in: neurogenetics 1/2016

01-01-2016 | Original Article

De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism

Authors: Linshan Shang, Lindsay B. Henderson, Megan T. Cho, Donald S. Petrey, Chin-To Fong, Katrina M. Haude, Natasha Shur, Julie Lundberg, Natalie Hauser, Jason Carmichael, Jeffrey Innis, Jane Schuette, Yvonne W. Wu, Shailesh Asaikar, Margaret Pearson, Leandra Folk, Kyle Retterer, Kristin G. Monaghan, Wendy K. Chung

Published in: Neurogenetics | Issue 1/2016

Login to get access

Abstract

Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and glycogen synthase kinase 3 beta (GSK3β)-mediated cell growth, chromatin remodeling, and gene transcriptional regulation. Using whole-exome sequencing (WES), we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with intellectual disability (ID) and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures, and dysmorphic features. Among the four variants, two have been previously reported and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K) and are predicted to disrupt the PP2A subunit binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID.
Literature
1.
go back to reference Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, van Lier B, Arts P, Wieskamp N, del Rosario M, van Bon BW, Hoischen A, de Vries BB, Brunner HG, Veltman JA (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112. doi:10.1038/ng.712 PubMedCrossRef Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, van Lier B, Arts P, Wieskamp N, del Rosario M, van Bon BW, Hoischen A, de Vries BB, Brunner HG, Veltman JA (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112. doi:10.​1038/​ng.​712 PubMedCrossRef
2.
go back to reference Ku CS, Polychronakos C, Tan EK, Naidoo N, Pawitan Y, Roukos DH, Mort M, Cooper DN (2013) A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry 18(2):141–153. doi:10.1038/mp.2012.58 PubMedCrossRef Ku CS, Polychronakos C, Tan EK, Naidoo N, Pawitan Y, Roukos DH, Mort M, Cooper DN (2013) A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry 18(2):141–153. doi:10.​1038/​mp.​2012.​58 PubMedCrossRef
3.
go back to reference Depaoli-Roach AA, Park IK, Cerovsky V, Csortos C, Durbin SD, Kuntz MJ, Sitikov A, Tang PM, Verin A, Zolnierowicz S (1994) Serine/threonine protein phosphatases in the control of cell function. Adv Enzym Regul 34:199–224CrossRef Depaoli-Roach AA, Park IK, Cerovsky V, Csortos C, Durbin SD, Kuntz MJ, Sitikov A, Tang PM, Verin A, Zolnierowicz S (1994) Serine/threonine protein phosphatases in the control of cell function. Adv Enzym Regul 34:199–224CrossRef
8.
go back to reference Graham JM Jr, Wheeler P, Tackels-Horne D, Lin AE, Hall BD, May M, Short KM, Schwartz CE, Cox TC (2003) A new X-linked syndrome with agenesis of the corpus callosum, mental retardation, coloboma, micrognathia, and a mutation in the Alpha 4 gene at Xq13. Am J Med Genet A 123A(1):37–44. doi:10.1002/ajmg.a.20504 PubMedCrossRef Graham JM Jr, Wheeler P, Tackels-Horne D, Lin AE, Hall BD, May M, Short KM, Schwartz CE, Cox TC (2003) A new X-linked syndrome with agenesis of the corpus callosum, mental retardation, coloboma, micrognathia, and a mutation in the Alpha 4 gene at Xq13. Am J Med Genet A 123A(1):37–44. doi:10.​1002/​ajmg.​a.​20504 PubMedCrossRef
9.
go back to reference McCright B, Brothman AR, Virshup DM (1996) Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 p12. Genomics 36(1):168–170PubMedCrossRef McCright B, Brothman AR, Virshup DM (1996) Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 p12. Genomics 36(1):168–170PubMedCrossRef
10.
go back to reference Louis JV, Martens E, Borghgraef P, Lambrecht C, Sents W, Longin S, Zwaenepoel K, Pijnenborg R, Landrieu I, Lippens G, Ledermann B, Gotz J, Van Leuven F, Goris J, Janssens V (2011) Mice lacking phosphatase PP2A subunit PR61/B'delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci U S A 108(17):6957–6962. doi:10.1073/pnas.1018777108 PubMedPubMedCentralCrossRef Louis JV, Martens E, Borghgraef P, Lambrecht C, Sents W, Longin S, Zwaenepoel K, Pijnenborg R, Landrieu I, Lippens G, Ledermann B, Gotz J, Van Leuven F, Goris J, Janssens V (2011) Mice lacking phosphatase PP2A subunit PR61/B'delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci U S A 108(17):6957–6962. doi:10.​1073/​pnas.​1018777108 PubMedPubMedCentralCrossRef
11.
go back to reference Zencir S, Sike A, Dobson MJ, Ayaydin F, Boros I, Topcu Z (2013) Identification of transcriptional and phosphatase regulators as interaction partners of human ADA3, a component of histone acetyltransferase complexes. Biochem J 450(2):311–320. doi:10.1042/BJ20120452 PubMedCrossRef Zencir S, Sike A, Dobson MJ, Ayaydin F, Boros I, Topcu Z (2013) Identification of transcriptional and phosphatase regulators as interaction partners of human ADA3, a component of histone acetyltransferase complexes. Biochem J 450(2):311–320. doi:10.​1042/​BJ20120452 PubMedCrossRef
12.
go back to reference Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M (2012) Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 31(18):3730–3744. doi:10.1038/emboj.2012.226 PubMedPubMedCentralCrossRef Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M (2012) Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 31(18):3730–3744. doi:10.​1038/​emboj.​2012.​226 PubMedPubMedCentralCrossRef
13.
go back to reference Deciphering Developmental Disorders S (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–228. doi:10.1038/nature14135 Deciphering Developmental Disorders S (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–228. doi:10.​1038/​nature14135
14.
go back to reference de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA, Vissers LE (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929. doi:10.1056/NEJMoa1206524 PubMedCrossRef de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA, Vissers LE (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929. doi:10.​1056/​NEJMoa1206524 PubMedCrossRef
15.
go back to reference Loveday C, Tatton-Brown K, Clarke M, Westwood I, Renwick A, Ramsay E, Nemeth A, Campbell J, Joss S, Gardner M, Zachariou A, Elliott A, Ruark E, van Montfort R, Childhood Overgrowth C, Rahman N (2015) Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum Mol Genet. doi:10.1093/hmg/ddv182 PubMedPubMedCentral Loveday C, Tatton-Brown K, Clarke M, Westwood I, Renwick A, Ramsay E, Nemeth A, Campbell J, Joss S, Gardner M, Zachariou A, Elliott A, Ruark E, van Montfort R, Childhood Overgrowth C, Rahman N (2015) Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum Mol Genet. doi:10.​1093/​hmg/​ddv182 PubMedPubMedCentral
16.
go back to reference Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221. doi:10.1038/nature13908 PubMedPubMedCentralCrossRef Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221. doi:10.​1038/​nature13908 PubMedPubMedCentralCrossRef
17.
go back to reference Houge G, Haesen D, Vissers LE, Mehta S, Parker MJ, Wright M, Vogt J, McKee S, Tolmie JL, Cordeiro N, Kleefstra T, Willemsen MH, Reijnders MR, Berland S, Hayman E, Lahat E, Brilstra EH, van Gassen KL, Zonneveld-Huijssoon E, de Bie CI, Hoischen A, Eichler EE, Holdhus R, Steen VM, Doskeland SO, Hurles ME, FitzPatrick DR, Janssens V (2015) B56delta-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest 125(8):3051–3062. doi:10.1172/JCI79860 PubMedPubMedCentralCrossRef Houge G, Haesen D, Vissers LE, Mehta S, Parker MJ, Wright M, Vogt J, McKee S, Tolmie JL, Cordeiro N, Kleefstra T, Willemsen MH, Reijnders MR, Berland S, Hayman E, Lahat E, Brilstra EH, van Gassen KL, Zonneveld-Huijssoon E, de Bie CI, Hoischen A, Eichler EE, Holdhus R, Steen VM, Doskeland SO, Hurles ME, FitzPatrick DR, Janssens V (2015) B56delta-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest 125(8):3051–3062. doi:10.​1172/​JCI79860 PubMedPubMedCentralCrossRef
18.
go back to reference Shang L, Cho MT, Retterer K, Folk L, Humberson J, Rohena L, Sidhu A, Saliganan S, Iglesias A, Vitazka P, Juusola J, O'Donnell-Luria AH, Shen Y, Chung WK (2015) Mutations in ARID2 are associated with intellectual disabilities. Neurogenetics 16(4):307–314. doi:10.1007/s10048-015-0454-0 PubMedCrossRef Shang L, Cho MT, Retterer K, Folk L, Humberson J, Rohena L, Sidhu A, Saliganan S, Iglesias A, Vitazka P, Juusola J, O'Donnell-Luria AH, Shen Y, Chung WK (2015) Mutations in ARID2 are associated with intellectual disabilities. Neurogenetics 16(4):307–314. doi:10.​1007/​s10048-015-0454-0 PubMedCrossRef
20.
go back to reference DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498. doi:10.1038/ng.806 PubMedPubMedCentralCrossRef DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498. doi:10.​1038/​ng.​806 PubMedPubMedCentralCrossRef
21.
go back to reference Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31(13):3375–3380PubMedPubMedCentralCrossRef Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31(13):3375–3380PubMedPubMedCentralCrossRef
22.
25.
go back to reference Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero JP, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D, Gelb BD (2007) Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39(1):75–79. doi:10.1038/ng1939 PubMedCrossRef Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero JP, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D, Gelb BD (2007) Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39(1):75–79. doi:10.​1038/​ng1939 PubMedCrossRef
27.
go back to reference Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54(2):239–243. doi:10.1002/ana.10607 PubMedCrossRef Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54(2):239–243. doi:10.​1002/​ana.​10607 PubMedCrossRef
28.
go back to reference Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE (2004) Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 55(4):595–596. doi:10.1002/ana.20028 PubMedCrossRef Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE (2004) Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 55(4):595–596. doi:10.​1002/​ana.​20028 PubMedCrossRef
29.
go back to reference McCright B, Virshup DM (1995) Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 270(44):26123–26128PubMedCrossRef McCright B, Virshup DM (1995) Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 270(44):26123–26128PubMedCrossRef
30.
go back to reference McCright B, Rivers AM, Audlin S, Virshup DM (1996) The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271(36):22081–22089PubMedCrossRef McCright B, Rivers AM, Audlin S, Virshup DM (1996) The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271(36):22081–22089PubMedCrossRef
31.
go back to reference Martens E, Stevens I, Janssens V, Vermeesch J, Gotz J, Goris J, Van Hoof C (2004) Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B' regulatory subunits of protein phosphatase 2A in mice. J Mol Biol 336(4):971–986. doi:10.1016/j.jmb.2003.12.047 PubMedCrossRef Martens E, Stevens I, Janssens V, Vermeesch J, Gotz J, Goris J, Van Hoof C (2004) Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B' regulatory subunits of protein phosphatase 2A in mice. J Mol Biol 336(4):971–986. doi:10.​1016/​j.​jmb.​2003.​12.​047 PubMedCrossRef
32.
go back to reference Yu UY, Yoo BC, Ahn JH (2014) Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation. Korean J Physiol Pharmacol Off J Korean Physiol Soc Kor Soc Pharmacol 18(2):155–161. doi:10.4196/kjpp.2014.18.2.155 CrossRef Yu UY, Yoo BC, Ahn JH (2014) Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation. Korean J Physiol Pharmacol Off J Korean Physiol Soc Kor Soc Pharmacol 18(2):155–161. doi:10.​4196/​kjpp.​2014.​18.​2.​155 CrossRef
34.
go back to reference Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441(7089):46–52. doi:10.1038/nature04663 PubMedCrossRef Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441(7089):46–52. doi:10.​1038/​nature04663 PubMedCrossRef
Metadata
Title
De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism
Authors
Linshan Shang
Lindsay B. Henderson
Megan T. Cho
Donald S. Petrey
Chin-To Fong
Katrina M. Haude
Natasha Shur
Julie Lundberg
Natalie Hauser
Jason Carmichael
Jeffrey Innis
Jane Schuette
Yvonne W. Wu
Shailesh Asaikar
Margaret Pearson
Leandra Folk
Kyle Retterer
Kristin G. Monaghan
Wendy K. Chung
Publication date
01-01-2016
Publisher
Springer Berlin Heidelberg
Published in
Neurogenetics / Issue 1/2016
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-015-0466-9

Other articles of this Issue 1/2016

neurogenetics 1/2016 Go to the issue