Skip to main content
Top
Published in: Journal of Artificial Organs 3/2021

01-09-2021 | Mitral Valve Replacement | Original Article

An application of a patient-specific cardiac simulator for the prediction of outcomes after mitral valve replacement: a pilot study

Authors: Hirotada Masuda, Shigeru Miyagawa, Seiryo Sugiura, Takumi Washio, Jun-ichi Okada, Takayoshi Ueno, Koichi Toda, Toru Kuratani, Toshiaki Hisada, Yoshiki Sawa

Published in: Journal of Artificial Organs | Issue 3/2021

Login to get access

Abstract

Despite advancements in preoperative prediction of patient outcomes, determination of the most appropriate surgical treatments for patients with severely impaired cardiac function remains a challenge. "UT-Heart" is a multi-scale, multi-physics heart simulator, which can be used to assess the effects of treatment without imposing any burden on the patients. This retrospective study aimed to assess whether UT-Heart can function as a tool that aids decision making for performing mitral valve replacements (MVR) in patients with severe mitral regurgitation (MR) and impaired left ventricular (LV) function. We used preoperative clinical data to create a patient-specific heart model using UT-Heart for a patient who had dilated cardiomyopathy with severe MR. After confirming that this heart model reproduced the preoperative state of the patient, we performed an in silico MVR operation without changing any parameters, such as the end-diastolic volume of the left ventricle, systemic vascular resistance, and the number of myocardiocytes. Among the functional changes introduced by in silico surgery, we found two indices, forward flow and the mechanical efficiency of the work done to the systemic circulation, which may relate positively to the favorable outcome observed in the real world. Thus, multi-scale, multi-physics heart simulators can reproduce the pathophysiology of MR with impaired LV function. By performing in silico MVR and examining the resultant functional changes, we identified two indices, whose usefulness should be tested in future studies.
Literature
1.
go back to reference Blondheim DS, Jacobs LE, Kotler MN, Costacurta GA, Parry WR. Dilated cardiomyopathy with mitral regurgitation: decreased survival despite a low frequency of left ventricular thrombus. Am Heart J. 1991;122:763–71.CrossRef Blondheim DS, Jacobs LE, Kotler MN, Costacurta GA, Parry WR. Dilated cardiomyopathy with mitral regurgitation: decreased survival despite a low frequency of left ventricular thrombus. Am Heart J. 1991;122:763–71.CrossRef
2.
go back to reference Duarte IG, Murphy CO, Kosinski AS, Jones EL, Craver JM, Gott JP, et al. Late survival after valve operation in patients with left ventricular dysfunction. Ann Thorac Surg. 1997;64:1089–95.CrossRef Duarte IG, Murphy CO, Kosinski AS, Jones EL, Craver JM, Gott JP, et al. Late survival after valve operation in patients with left ventricular dysfunction. Ann Thorac Surg. 1997;64:1089–95.CrossRef
3.
go back to reference Haan CK, Cabral CI, Conetta DA, Coombs LP, Edwards FH. Selecting patients with mitral regurgitation and left ventricular dysfunction for isolated mitral valve surgery. Ann Throc Surg. 2004;78:820–5.CrossRef Haan CK, Cabral CI, Conetta DA, Coombs LP, Edwards FH. Selecting patients with mitral regurgitation and left ventricular dysfunction for isolated mitral valve surgery. Ann Throc Surg. 2004;78:820–5.CrossRef
4.
go back to reference Leung DY, Armstrong G, Griffin BP, Thomas JD, Marwick TH. Latent left ventricular dysfunction in patients with mitral regurgitation: feasibility of measuring diminished contractile reserve from a simplified model of noninvasively derived left ventricular pressure–volume loops. Am Heart J. 1999;137:427–34.CrossRef Leung DY, Armstrong G, Griffin BP, Thomas JD, Marwick TH. Latent left ventricular dysfunction in patients with mitral regurgitation: feasibility of measuring diminished contractile reserve from a simplified model of noninvasively derived left ventricular pressure–volume loops. Am Heart J. 1999;137:427–34.CrossRef
5.
go back to reference Okada J, Washio T, Maehara A, Momomura S, Sugiura S, Hisada T. Transmural and apicobasal gradients in repolarization contribute to T-wave genesis in human surface ECG. Am J Physiol. 2011;301:H200–8. Okada J, Washio T, Maehara A, Momomura S, Sugiura S, Hisada T. Transmural and apicobasal gradients in repolarization contribute to T-wave genesis in human surface ECG. Am J Physiol. 2011;301:H200–8.
6.
go back to reference Sugiura S, Washio T, Hatano A, Okada J, Watanabe H, Hisada T. Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator. Prog Biophys Mol Biol. 2012;110:380–9.CrossRef Sugiura S, Washio T, Hatano A, Okada J, Watanabe H, Hisada T. Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator. Prog Biophys Mol Biol. 2012;110:380–9.CrossRef
7.
go back to reference Washio T, Okada J, Hisada T. A parallel multilevel technique for solving the bidomain equation on a human heart with Purkinje fibers and a torso model. SIAM Rev. 2010;52:717–43.CrossRef Washio T, Okada J, Hisada T. A parallel multilevel technique for solving the bidomain equation on a human heart with Purkinje fibers and a torso model. SIAM Rev. 2010;52:717–43.CrossRef
8.
go back to reference Washio T, Okada J-I, Takahashi A, Yoneda K, Kadooka Y, Sugiura S, et al. Multiscale heart simulation with cooperative stochastic cross-bridge dynamics and cellular structures. SIAM J Multiscale Model Simul. 2013;11:965–99.CrossRef Washio T, Okada J-I, Takahashi A, Yoneda K, Kadooka Y, Sugiura S, et al. Multiscale heart simulation with cooperative stochastic cross-bridge dynamics and cellular structures. SIAM J Multiscale Model Simul. 2013;11:965–99.CrossRef
9.
go back to reference Watanabe H, Sugiura S, Kafuku H, Hisada T. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J. 2004;87:2074–85.CrossRef Watanabe H, Sugiura S, Kafuku H, Hisada T. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J. 2004;87:2074–85.CrossRef
10.
go back to reference Okada J-I, Sasaki T, Washio T, Yamashita H, Kariya T, Imai Y, et al. Patient specific simulation of body surface ECG using the finite element method. PACE. 2013;36:309–21.CrossRef Okada J-I, Sasaki T, Washio T, Yamashita H, Kariya T, Imai Y, et al. Patient specific simulation of body surface ECG using the finite element method. PACE. 2013;36:309–21.CrossRef
11.
go back to reference Okada J-I, Washio T, Nakagawa M, Watanabe M, Kadooka Y, Kariya T, et al. Multi-scale, tailor-made heart simulation can predict the effect of cardiac resynchronization therapy. J Mol Cell Cardiol. 2017;108:17–23.CrossRef Okada J-I, Washio T, Nakagawa M, Watanabe M, Kadooka Y, Kariya T, et al. Multi-scale, tailor-made heart simulation can predict the effect of cardiac resynchronization therapy. J Mol Cell Cardiol. 2017;108:17–23.CrossRef
12.
go back to reference Isotani A, Yoneda K, Iwamura T, Watanabe M, Okada J-I, Washio T, et al. Patient-specific heart simulation can identify non-responders to cardiac resynchronization therapy. Heart Vessels. 2020;35:1135–47.CrossRef Isotani A, Yoneda K, Iwamura T, Watanabe M, Okada J-I, Washio T, et al. Patient-specific heart simulation can identify non-responders to cardiac resynchronization therapy. Heart Vessels. 2020;35:1135–47.CrossRef
13.
go back to reference Kariya T, Washio T, Okada J-I, Nakagawa M, Watanabe M, Kadooka Y, et al. Personalized perioperative multi-scale, multi-physics heart simulation of double outlet right ventricle. Ann Biomed Eng. 2020;48:1740–50.CrossRef Kariya T, Washio T, Okada J-I, Nakagawa M, Watanabe M, Kadooka Y, et al. Personalized perioperative multi-scale, multi-physics heart simulation of double outlet right ventricle. Ann Biomed Eng. 2020;48:1740–50.CrossRef
14.
go back to reference Hisada T, Kurokawa H, Oshida M, Yamamoto T, Washio T, Okada J-I, et al. Inventors modeling device, program, computer-readable recording medium, and method of establishing correspondence. 2013. Hisada T, Kurokawa H, Oshida M, Yamamoto T, Washio T, Okada J-I, et al. Inventors modeling device, program, computer-readable recording medium, and method of establishing correspondence. 2013.
15.
go back to reference Klotz S, Dickstein ML, Burkhoff D. A computational method of prediction of the end diastolic pressure–volume relationship by single beat. Nat Protoc. 2007;2:2152–8.CrossRef Klotz S, Dickstein ML, Burkhoff D. A computational method of prediction of the end diastolic pressure–volume relationship by single beat. Nat Protoc. 2007;2:2152–8.CrossRef
16.
go back to reference Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. Am J Physiol. 2004;286:H1573–89. Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. Am J Physiol. 2004;286:H1573–89.
17.
go back to reference Okada J, Sasaki T, Washio T, Yamashita H, Kariya T, Imai Y, et al. Patient specific simulation of body surface ECG using the finite element method. Pac Clin Electrophysiol (PACE). 2013;36:309–21.CrossRef Okada J, Sasaki T, Washio T, Yamashita H, Kariya T, Imai Y, et al. Patient specific simulation of body surface ECG using the finite element method. Pac Clin Electrophysiol (PACE). 2013;36:309–21.CrossRef
18.
go back to reference Kerckhoffs RCP, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng. 2006;35:1–18.CrossRef Kerckhoffs RCP, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng. 2006;35:1–18.CrossRef
19.
go back to reference Santamore WP, Burkhoff D. Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol. 1991;260:H146–57.PubMed Santamore WP, Burkhoff D. Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol. 1991;260:H146–57.PubMed
Metadata
Title
An application of a patient-specific cardiac simulator for the prediction of outcomes after mitral valve replacement: a pilot study
Authors
Hirotada Masuda
Shigeru Miyagawa
Seiryo Sugiura
Takumi Washio
Jun-ichi Okada
Takayoshi Ueno
Koichi Toda
Toru Kuratani
Toshiaki Hisada
Yoshiki Sawa
Publication date
01-09-2021
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 3/2021
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-021-01248-6

Other articles of this Issue 3/2021

Journal of Artificial Organs 3/2021 Go to the issue