Skip to main content
Top
Published in: Journal of Artificial Organs 4/2015

01-12-2015 | Brief Communication

Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold

Authors: Marina Funayama, Maya Furukoshi, Takeshi Moriwaki, Yasuhide Nakayama

Published in: Journal of Artificial Organs | Issue 4/2015

Login to get access

Abstract

In autologous valved conduits (biovalves) using in-body tissue architecture, the limited area available for leaflet formation is a concern. In this study, we designed a novel biovalve mold with slits to enhance in vivo cell migration, regardless of size. As a control, the original mold without slits was used. When both types of molds were embedded into subcutaneous pouches in beagle dogs for 8 weeks, the outer surfaces of all molds were completely covered with connective tissue to form conduit tissue. In the molds without slits, the leaflet size was limited to half of the design. In contrast, in the mold with slits, the complete leaflet area was formed. Upon trimming excess peripheral tissues, removing the mold, and cutting the connective tissue formed at the slits, completely autologous connective tissue biovalves with the designed leaflet area were obtained as type S (diameter, 6–28 mm) biovalves. The slit structure customized to the mold was effective for allowing cells to enter, thereby facilitating cell migration and contributing to the successful preparation of reliable biovalves of various physiological sizes suitable for all clinical uses.
Literature
1.
go back to reference Hayashida K, Kanda K, Oie T, Okamoto Y, Ishibashi-Ueda H, Onoyama M, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Architecture of an in vivo-tissue engineered autologous conduit “biovalve”. J Biomed Mater Res B Appl Biomater. 2008;86:1–8.CrossRefPubMed Hayashida K, Kanda K, Oie T, Okamoto Y, Ishibashi-Ueda H, Onoyama M, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Architecture of an in vivo-tissue engineered autologous conduit “biovalve”. J Biomed Mater Res B Appl Biomater. 2008;86:1–8.CrossRefPubMed
2.
go back to reference Nakayama Y, Yamanami M, Yahata Y, Tajikawa T, Ohba K, Watanabe T, Kanda K, Yaku H. Preparation of a completely autologous trileaflet valve-shaped construct by in-body tissue architecture technology. J Biomed Mater Res B Appl Biomater. 2009;91:813–8.CrossRefPubMed Nakayama Y, Yamanami M, Yahata Y, Tajikawa T, Ohba K, Watanabe T, Kanda K, Yaku H. Preparation of a completely autologous trileaflet valve-shaped construct by in-body tissue architecture technology. J Biomed Mater Res B Appl Biomater. 2009;91:813–8.CrossRefPubMed
3.
go back to reference Takewa Y, Yamanami M, Kishimoto Y, Arakawa M, Kanda K, Matsui Y, Oie T, Ishibashi-Ueda H, Tajikawa T, Ohba K, Yaku H, Taenaka Y, Tatsumi E, Nakayama Y. In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model. J Artif Organs. 2013;16:176–84.CrossRefPubMed Takewa Y, Yamanami M, Kishimoto Y, Arakawa M, Kanda K, Matsui Y, Oie T, Ishibashi-Ueda H, Tajikawa T, Ohba K, Yaku H, Taenaka Y, Tatsumi E, Nakayama Y. In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model. J Artif Organs. 2013;16:176–84.CrossRefPubMed
4.
go back to reference Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, Watanabe T, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation. 2010;122:S100–6.CrossRefPubMed Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, Watanabe T, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation. 2010;122:S100–6.CrossRefPubMed
5.
go back to reference Nakayama Y, Takewa Y, Sumikura H, Yamanami M, Matsui Y, Oie T, Kishimoto Y, Arakawa M, Ohmuma K, Tajikawa T, Kanda K, Tatsumi E. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding. J Biomed Mater Res B Appl Biomater. 2015;103:1–11.CrossRefPubMed Nakayama Y, Takewa Y, Sumikura H, Yamanami M, Matsui Y, Oie T, Kishimoto Y, Arakawa M, Ohmuma K, Tajikawa T, Kanda K, Tatsumi E. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding. J Biomed Mater Res B Appl Biomater. 2015;103:1–11.CrossRefPubMed
6.
go back to reference Mizuno T, Takewa Y, Sumikura H, Ohnuma K, Moriwaki T, Yamanami M, Oie T, Tatsumi E, Uechi M, Nakayama Y. Preparation of an autologous heart valve with a stent (stent-biovalve) using the stent eversion method. J Biomed Mater Res B Appl Biomater. 2014;102:1038–45.CrossRefPubMed Mizuno T, Takewa Y, Sumikura H, Ohnuma K, Moriwaki T, Yamanami M, Oie T, Tatsumi E, Uechi M, Nakayama Y. Preparation of an autologous heart valve with a stent (stent-biovalve) using the stent eversion method. J Biomed Mater Res B Appl Biomater. 2014;102:1038–45.CrossRefPubMed
7.
go back to reference Funayama M, Sumikura H, Takewa Y, Tatsumi E, Nakayama Y. Development of self-expanding valved stents with autologous tubular leaflet tissues for transcatheter valve implantation. J Artif Organs. 2015;. doi:10.1007/s1004701508206. Funayama M, Sumikura H, Takewa Y, Tatsumi E, Nakayama Y. Development of self-expanding valved stents with autologous tubular leaflet tissues for transcatheter valve implantation. J Artif Organs. 2015;. doi:10.​1007/​s1004701508206.
8.
go back to reference Stickler P, De Visscher G, Mesure L, Famaey N, Martin D, Campbell JH, Van Oosterwyck H, Meuris B, Flameng W. Cyclically stretching developing tissue in vivo enhances mechanical strength and organization of vascular grafts. Acta Biomater. 2010;6:2448–56.CrossRefPubMed Stickler P, De Visscher G, Mesure L, Famaey N, Martin D, Campbell JH, Van Oosterwyck H, Meuris B, Flameng W. Cyclically stretching developing tissue in vivo enhances mechanical strength and organization of vascular grafts. Acta Biomater. 2010;6:2448–56.CrossRefPubMed
9.
go back to reference Kishi A, Isoyama T, Saito I, Miura H, Nakagawa H, Kouno A, Ono T, Inoue Y, Yamaguchi S, Shi W, Abe Y, Imachi K, Noshiro M. Use of in vivo insert molding to form a jellyfish valve leaflet. Artif Organs. 2010;34:1125–31.CrossRefPubMed Kishi A, Isoyama T, Saito I, Miura H, Nakagawa H, Kouno A, Ono T, Inoue Y, Yamaguchi S, Shi W, Abe Y, Imachi K, Noshiro M. Use of in vivo insert molding to form a jellyfish valve leaflet. Artif Organs. 2010;34:1125–31.CrossRefPubMed
10.
go back to reference Funayama M, Takewa Y, Oie T, Matsui Y, Tatsumi E, Nakayama Y. In situ observation and enhancement of leaflet tissue formation in bioprosthetic “biovalve”. J Artif Organs. 2015;18:40–7.CrossRefPubMed Funayama M, Takewa Y, Oie T, Matsui Y, Tatsumi E, Nakayama Y. In situ observation and enhancement of leaflet tissue formation in bioprosthetic “biovalve”. J Artif Organs. 2015;18:40–7.CrossRefPubMed
11.
12.
go back to reference Sripathi VC, Kumar RK, Balakrishnan KR. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann Thorac Surg. 2004;77:844–51.CrossRefPubMed Sripathi VC, Kumar RK, Balakrishnan KR. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann Thorac Surg. 2004;77:844–51.CrossRefPubMed
Metadata
Title
Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold
Authors
Marina Funayama
Maya Furukoshi
Takeshi Moriwaki
Yasuhide Nakayama
Publication date
01-12-2015
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 4/2015
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-015-0856-7

Other articles of this Issue 4/2015

Journal of Artificial Organs 4/2015 Go to the issue