Skip to main content
Top
Published in: Journal of Artificial Organs 1/2014

01-03-2014 | Original Article

Computational fluid dynamics analysis of the pump parameters in the helical flow pump

Authors: Kyohei Hosoda, Kohei Ishii, Takashi Isoyama, Itsuro Saito, Yusuke Inoue, Kouki Ariyoshi, Toshiya Ono, Hidemoto Nakagawa, Kou Imachi, Hiroshi Kumagai, Yusuke Abe

Published in: Journal of Artificial Organs | Issue 1/2014

Login to get access

Abstract

The helical flow pump (HFP) was invented to develop a total artificial heart at the University of Tokyo in 2005. The HFP consists of the multi-vane impeller involving rotor magnets, a motor stator and pump housing having double-helical volutes. To investigate the characteristics of the HFP, computational fluid dynamics analysis was performed. Validation of the computational model was performed with the data of the actual pump. A control computational model in which the vane area corresponded approximately to that of the actual pump was designed for the parametric study. The parametric study was performed varying the vane height, vane width and helical volute pitch. When the vane height was varied from 0.5 to 1.5 times that of the control computational model, the H–Q (pressure head vs. flow) and efficiency curves were translated in parallel with the vane height. When the vane height was two and three times that of the control computational model, the profile of these curves changed. From the results, the best proportion for the vane was considered to be a vane height between 1.5 and 2 times the vane width. The effect of vane width was not very strong compared to that of the vane height. A similar tendency in vane height was observed by varying the helical volute pitch. The best helical volute-pitch size is considered to be between 1.5 and 2 times the vane width. Although further study is necessary to determine the best values for these parameters, the characteristics of the pump parameters in the HFP could be approximately clarified.
Literature
1.
go back to reference DeBakey ME. A miniature implantable axial flow ventricular assist device. Ann Thorac Surg. 1999;68:637–40.PubMedCrossRef DeBakey ME. A miniature implantable axial flow ventricular assist device. Ann Thorac Surg. 1999;68:637–40.PubMedCrossRef
2.
go back to reference Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, Butler KC. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20.PubMed Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, Butler KC. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20.PubMed
3.
go back to reference Frazier OH, Shah NA, Myers TJ, Robertson KD, Gregoric ID, Delgado R. Use of the Flowmaker (Jarvik 2000) left ventricular assist device for destination therapy and bridging to transplan- tation. Cardiology. 2004;101:111–6.PubMedCrossRef Frazier OH, Shah NA, Myers TJ, Robertson KD, Gregoric ID, Delgado R. Use of the Flowmaker (Jarvik 2000) left ventricular assist device for destination therapy and bridging to transplan- tation. Cardiology. 2004;101:111–6.PubMedCrossRef
4.
go back to reference Schmid C, Tonny D, Tjan TDT, Etz C, Schmidt CS, Wenzelburger F, Wilhelm M, Rothenburger M, Drees G, Scheld HH. First clinical experience with the Incor left ventricular assist device. J Heart Lung Transpl. 2005;24:1188–94.CrossRef Schmid C, Tonny D, Tjan TDT, Etz C, Schmidt CS, Wenzelburger F, Wilhelm M, Rothenburger M, Drees G, Scheld HH. First clinical experience with the Incor left ventricular assist device. J Heart Lung Transpl. 2005;24:1188–94.CrossRef
5.
go back to reference Jeffrey LA, Daniel T, Michael A, Carlos R. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 2010;56:285–9. Jeffrey LA, Daniel T, Michael A, Carlos R. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 2010;56:285–9.
6.
go back to reference Yamazaki K, Kihara S, Akimoto T, Tagusari O, Kawai A, Umezu M, Tomioka J, Kormos RL, Griffith BP, Kurosawa H. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg. 2002;50:461–5.PubMedCrossRef Yamazaki K, Kihara S, Akimoto T, Tagusari O, Kawai A, Umezu M, Tomioka J, Kormos RL, Griffith BP, Kurosawa H. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg. 2002;50:461–5.PubMedCrossRef
7.
go back to reference Nojiri C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Umemura W, Ozaki T, Suzuki M, Akamatsu T, Westaby S, Katsumata T, Saito S. Development status of Terumo implantable left ventricular assist system. Artif Organs. 2001;25:411–3.PubMedCrossRef Nojiri C, Kijima T, Maekawa J, Horiuchi K, Kido T, Sugiyama T, Mori T, Sugiura N, Asada T, Umemura W, Ozaki T, Suzuki M, Akamatsu T, Westaby S, Katsumata T, Saito S. Development status of Terumo implantable left ventricular assist system. Artif Organs. 2001;25:411–3.PubMedCrossRef
8.
go back to reference Frazier OH, Cohn WE, Tuzun E, Winkler JA, Gregoric ID. Continuous-flow total artificial heart supports long-term survival of a calf. Tex Heart Inst J. 2009;36:568–74.PubMedCentralPubMed Frazier OH, Cohn WE, Tuzun E, Winkler JA, Gregoric ID. Continuous-flow total artificial heart supports long-term survival of a calf. Tex Heart Inst J. 2009;36:568–74.PubMedCentralPubMed
9.
go back to reference Loebe M, Bruckner B, Reardon MJ, Doorn E, Estep J, Gregoric I, Masud F, Cohn W, Motomura T, Torre-Amione G, Frazier OH. Initial clinical experience of total cardiac replacement with dual HeartMate-II axial flow pumps for severe biventricular heart failure. Methodist Debakey Cardiovasc J. 2011;7:40–4.PubMed Loebe M, Bruckner B, Reardon MJ, Doorn E, Estep J, Gregoric I, Masud F, Cohn W, Motomura T, Torre-Amione G, Frazier OH. Initial clinical experience of total cardiac replacement with dual HeartMate-II axial flow pumps for severe biventricular heart failure. Methodist Debakey Cardiovasc J. 2011;7:40–4.PubMed
10.
go back to reference Fukamachi K, Horvath DJ, Massiello AL, et al. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant. 2010;29:13–20.PubMedCentralPubMedCrossRef Fukamachi K, Horvath DJ, Massiello AL, et al. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant. 2010;29:13–20.PubMedCentralPubMedCrossRef
11.
go back to reference Greatrex NA, Timms DL, Kurita N, Palmer EW, Masuzawa T. Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH. IEEE Trans Biomed Eng. 2010;57:714–21.PubMedCrossRef Greatrex NA, Timms DL, Kurita N, Palmer EW, Masuzawa T. Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH. IEEE Trans Biomed Eng. 2010;57:714–21.PubMedCrossRef
12.
go back to reference Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS, Banayosy AE, Ündar A. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artif Organs. 2010;34:529–36.PubMedCrossRef Guan Y, Karkhanis T, Wang S, Rider A, Koenig SC, Slaughter MS, Banayosy AE, Ündar A. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artif Organs. 2010;34:529–36.PubMedCrossRef
13.
go back to reference Abe Y, Ishii K, Isoyama T, Saito I, Inoue Y, Ono T, Nakagawa H, Nakano E, Fukazawa K, Ishihara K, Fukunaga K, Ono M, Imachi K. The helical flow pump with a hydrodynamic levitation impeller. J Artif Organs. 2012;15:331–40.PubMedCrossRef Abe Y, Ishii K, Isoyama T, Saito I, Inoue Y, Ono T, Nakagawa H, Nakano E, Fukazawa K, Ishihara K, Fukunaga K, Ono M, Imachi K. The helical flow pump with a hydrodynamic levitation impeller. J Artif Organs. 2012;15:331–40.PubMedCrossRef
14.
go back to reference Abe Y, Ishii K, Isoyama T, Saito I, Inoue Y, Sato M, Hara S, Hosoda K, Ariyoshi K, Nakagawa H, Ono T, Fukazawa K, Ishihara K, Imachi K. The helical flow total artificial heart: implantation in goats. Conf Proc IEEE Eng Med Biol Soc. 2013; 2720–3. ISSN 1557-170X. Abe Y, Ishii K, Isoyama T, Saito I, Inoue Y, Sato M, Hara S, Hosoda K, Ariyoshi K, Nakagawa H, Ono T, Fukazawa K, Ishihara K, Imachi K. The helical flow total artificial heart: implantation in goats. Conf Proc IEEE Eng Med Biol Soc. 2013; 2720–3. ISSN 1557-170X.
15.
go back to reference Richards PJ, Hoxey RP. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. J Wind Eng Ind Aerodyn. 1993;46&47:145–53.CrossRef Richards PJ, Hoxey RP. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. J Wind Eng Ind Aerodyn. 1993;46&47:145–53.CrossRef
Metadata
Title
Computational fluid dynamics analysis of the pump parameters in the helical flow pump
Authors
Kyohei Hosoda
Kohei Ishii
Takashi Isoyama
Itsuro Saito
Yusuke Inoue
Kouki Ariyoshi
Toshiya Ono
Hidemoto Nakagawa
Kou Imachi
Hiroshi Kumagai
Yusuke Abe
Publication date
01-03-2014
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 1/2014
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-013-0739-8

Other articles of this Issue 1/2014

Journal of Artificial Organs 1/2014 Go to the issue