Skip to main content
Top
Published in: Journal of Artificial Organs 4/2013

01-12-2013 | Original Article

A parametric study on mathematical formulation and geometrical construction of a stentless aortic heart valve

Authors: Esfandyar Kouhi, Yosry S. Morsi

Published in: Journal of Artificial Organs | Issue 4/2013

Login to get access

Abstract

This study presents a novel methodology for constructing an accurate geometrical model of a stentless aortic heart valve replacement (AVR). The main objective is to propose an optimized AVR model that can be used as an ideal scaffold for tissue engineering applications or a biocompatible prosthesis. Current techniques available for creating heart valve geometry, including leaflets, are very complicated and are not precise, due to the extensive use of various complicated parameters. This paper introduces an alternative design procedure that uses limited and effective numbers of controlling parameters to construct the whole valve including the sinus of valsalva. In doing so the hyperbolic curves for multithickness leaflets are used and a 3D elliptical formulation is incorporated for the surface geometry of the sinus of valsalva. Still, the feasibility and the precision of the mathematical method are established by performing standard deviation analysis on the constructed surfaces. The surface fitting residuals are found as low as error 0.2351 mm with standard deviation of 8.83e−5 over the commissural lines. Preliminary validation to the proposed AVR model performance is achieved by testing the generated AVR model under quasi static condition while obtaining the mesh independent setup. The numerical model showed a rapid response of the leaflets to the transvalvular pressure where adequate values of stress are measured over the commissural lines.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gott VL, Alejo DE, Cameron DE. Mechanical heart valves: 50 years of evolution. Ann Thorac Surg. 2003;76(6):S2230–9.PubMedCrossRef Gott VL, Alejo DE, Cameron DE. Mechanical heart valves: 50 years of evolution. Ann Thorac Surg. 2003;76(6):S2230–9.PubMedCrossRef
2.
go back to reference Desai ND, Christakis GT. Bioprosthetic aortic valve replacement: stented pericardial and porcine valves. In: Cardiac surgery in the adult. New York: McGraw-Hill Professional; 2008. p. 867–94. Desai ND, Christakis GT. Bioprosthetic aortic valve replacement: stented pericardial and porcine valves. In: Cardiac surgery in the adult. New York: McGraw-Hill Professional; 2008. p. 867–94.
3.
go back to reference Emery RW, Emery AM, Knutsen A, Raikar GV. Aortic valve replacement with a mechanical cardiac valve prosthesis. In: Cardiac surgery in the adult. New York: McGraw-Hill Professional: 2008. p. 841–56. Emery RW, Emery AM, Knutsen A, Raikar GV. Aortic valve replacement with a mechanical cardiac valve prosthesis. In: Cardiac surgery in the adult. New York: McGraw-Hill Professional: 2008. p. 841–56.
4.
go back to reference Mihaljevic TI, Sayeed MR, Stamou SC, Paul SI. Pathophysiology of aortic valve disease. In: Cardiac surgery in the adult 2008. New York: McGraw-Hill Professional, 2008. p. 825–40. Mihaljevic TI, Sayeed MR, Stamou SC, Paul SI. Pathophysiology of aortic valve disease. In: Cardiac surgery in the adult 2008. New York: McGraw-Hill Professional, 2008. p. 825–40.
5.
go back to reference Thubrikar MJ. The aortic valve. Boca Raton: CRC Press. 1990. p. 221. Thubrikar MJ. The aortic valve. Boca Raton: CRC Press. 1990. p. 221.
6.
go back to reference Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ. Geometric modeling of functional trileaflet aortic valves: development and clinical applications. J Biomech. 2006;39(14):2665–72.PubMedCrossRef Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ. Geometric modeling of functional trileaflet aortic valves: development and clinical applications. J Biomech. 2006;39(14):2665–72.PubMedCrossRef
7.
go back to reference Mackay TG, Wheatley DJ, Bernacca GM, Fisher AC, Hindle CS. New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials. 1996;17(19):1857–63.PubMedCrossRef Mackay TG, Wheatley DJ, Bernacca GM, Fisher AC, Hindle CS. New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials. 1996;17(19):1857–63.PubMedCrossRef
8.
go back to reference Leat ME, Fisher J. Comparative-study of the function of the abiomed polyurethane heart-valve for use in left-ventricular assist devices. J Biomed Eng. 1993;15(6):516–20.PubMedCrossRef Leat ME, Fisher J. Comparative-study of the function of the abiomed polyurethane heart-valve for use in left-ventricular assist devices. J Biomed Eng. 1993;15(6):516–20.PubMedCrossRef
9.
go back to reference Leat ME, Fisher J. A synthetic leaflet heart-valve with improved opening characteristics. Med Eng Phys. 1994;16(6):470–6.PubMedCrossRef Leat ME, Fisher J. A synthetic leaflet heart-valve with improved opening characteristics. Med Eng Phys. 1994;16(6):470–6.PubMedCrossRef
10.
go back to reference Jiang HJ, Campbell G, Boughner D, Wan WK, Quantz M. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med Eng Phys. 2004;26(4):269–77.PubMedCrossRef Jiang HJ, Campbell G, Boughner D, Wan WK, Quantz M. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med Eng Phys. 2004;26(4):269–77.PubMedCrossRef
11.
go back to reference Jiang HJ, Campbell G, Xi FF. Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve. Med Eng Phys. 2005;27(2):175–80.PubMedCrossRef Jiang HJ, Campbell G, Xi FF. Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve. Med Eng Phys. 2005;27(2):175–80.PubMedCrossRef
12.
go back to reference Jiang HJ, Campbell G, Canas R. Leaflet geometry extraction and parametric representation of a pericardial artificial heart valve. In: Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 2005. 219(H:2)143–52. Jiang HJ, Campbell G, Canas R. Leaflet geometry extraction and parametric representation of a pericardial artificial heart valve. In: Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 2005. 219(H:2)143–52.
13.
go back to reference De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech. 2004;37(3):303–11.PubMedCrossRef De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech. 2004;37(3):303–11.PubMedCrossRef
14.
go back to reference Kouhi E. An advanced fluid structure interaction study of tri-leaflet aortic heart valve. In: FEIS. Australia: Swinburne University of Technology 2012. Kouhi E. An advanced fluid structure interaction study of tri-leaflet aortic heart valve. In: FEIS. Australia: Swinburne University of Technology 2012.
15.
go back to reference Korn GA. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. 2000. Korn GA. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. 2000.
16.
go back to reference Polyanin AD, Manzhirov AV. Handbook of mathematics for engineers and scientists. Boca Raton: CRC Press. 2006. Polyanin AD, Manzhirov AV. Handbook of mathematics for engineers and scientists. Boca Raton: CRC Press. 2006.
18.
go back to reference Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP. Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech. 2008;41(7):1510–9.PubMedCrossRef Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP. Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech. 2008;41(7):1510–9.PubMedCrossRef
Metadata
Title
A parametric study on mathematical formulation and geometrical construction of a stentless aortic heart valve
Authors
Esfandyar Kouhi
Yosry S. Morsi
Publication date
01-12-2013
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 4/2013
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-013-0719-z

Other articles of this Issue 4/2013

Journal of Artificial Organs 4/2013 Go to the issue