Skip to main content
Top
Published in: Hernia 6/2017

01-12-2017 | Original Article

Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid

Authors: F. Lesage, S. Pranpanus, F. M. Bosisio, M. Jacobs, S. Ospitalieri, J. Toelen, J. Deprest

Published in: Hernia | Issue 6/2017

Login to get access

Abstract

Purpose

Surgical restoration of soft tissue defects often requires implantable devices. The clinical outcome of the surgery is determined by the properties inherent to the used matrix. Mesenchymal stem cells (MSC) modulate the immune processes after in vivo transplantation and their addition to matrices is associated with constructive remodeling. Herein we evaluate the potential of MSC derived from the amniotic fluid (AF-MSC), an interesting MSC source for cell therapeutic applications in the perinatal period, for immune modulation when added to a biomaterial.

Methods

We implant cell free small intestinal submucosa (SIS) or SIS seeded with AF-MSC at a density of 1 × 105/cm2 subcutaneously at the abdominal wall in immune competent rats. The host immune response is evaluated at 3, 7 and 14 days postoperatively.

Results

The matrix-specific or cellular characteristics are not altered after 24 h of in vitro co-culture of SIS with AF-MSC. The host immune response was not different between animals implanted with cell free or AF-MSC-seeded SIS in terms of cellular infiltration, vascularity, macrophage polarization or scaffold replacement. Profiling the mRNA expression level of inflammatory cytokines at the matrix interface shows a significant reduction in the expression of the pro-inflammatory marker Tnf-α and a trend towards lower iNos expression upon AF-MSC-seeding of the SIS matrix. Anti-inflammatory marker expression does not alter upon cell seeding of matrix implants.

Conclusion

We conclude that SIS is a suitable substrate for in vitro culture of AF-MSC and fibroblasts. AF-MSC addition to SIS does not significantly modulate the host immune response after subcutaneous implantation in rats.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robert M et al (2014) Absorbable mesh augmentation compared with no mesh for anterior prolapse: a randomized controlled trial. Obstet Gynecol 123(2 Pt 1):288–294CrossRefPubMed Robert M et al (2014) Absorbable mesh augmentation compared with no mesh for anterior prolapse: a randomized controlled trial. Obstet Gynecol 123(2 Pt 1):288–294CrossRefPubMed
2.
go back to reference Romao RL et al (2012) What is the best prosthetic material for patch repair of congenital diaphragmatic hernia? Comparison and meta-analysis of porcine small intestinal submucosa and polytetrafluoroethylene. J Pediatr Surg 47(8):1496–1500CrossRefPubMed Romao RL et al (2012) What is the best prosthetic material for patch repair of congenital diaphragmatic hernia? Comparison and meta-analysis of porcine small intestinal submucosa and polytetrafluoroethylene. J Pediatr Surg 47(8):1496–1500CrossRefPubMed
3.
go back to reference Witt RG et al (2013) Short-term experience of porcine small intestinal submucosa patches in paediatric cardiovascular surgery. Eur J Cardio-thorac Surg 44(1):72–76CrossRef Witt RG et al (2013) Short-term experience of porcine small intestinal submucosa patches in paediatric cardiovascular surgery. Eur J Cardio-thorac Surg 44(1):72–76CrossRef
4.
go back to reference Baldursson BT et al (2015) Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study. Int J Low Extrem Wounds 14(1):37–43CrossRefPubMed Baldursson BT et al (2015) Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study. Int J Low Extrem Wounds 14(1):37–43CrossRefPubMed
5.
go back to reference Janis AD et al (2012) Structural characteristics of small intestinal submucosa constructs dictate in vivo incorporation and angiogenic response. J Biomater Appl 26(8):1013–1033CrossRefPubMed Janis AD et al (2012) Structural characteristics of small intestinal submucosa constructs dictate in vivo incorporation and angiogenic response. J Biomater Appl 26(8):1013–1033CrossRefPubMed
6.
go back to reference Mareschi K et al (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86(10):1099–1100PubMed Mareschi K et al (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86(10):1099–1100PubMed
7.
go back to reference Rus Ciuca D et al (2011) Isolation and characterization of chorionic mesenchymal stem cells from the placenta. Rom J Morphol Embryol 52(3):803–808PubMed Rus Ciuca D et al (2011) Isolation and characterization of chorionic mesenchymal stem cells from the placenta. Rom J Morphol Embryol 52(3):803–808PubMed
8.
go back to reference Murphy S et al (2010) Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 1:1E 6PubMed Murphy S et al (2010) Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 1:1E 6PubMed
9.
go back to reference Zia S et al (2013) Routine clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications. Prenat Diagn 33(10):921–928PubMed Zia S et al (2013) Routine clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications. Prenat Diagn 33(10):921–928PubMed
10.
go back to reference De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMed De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMed
11.
go back to reference Patel M, Fisher JP (2008) Biomaterial scaffolds in pediatric tissue engineering. Pediatr Res 63(5):497–501CrossRefPubMed Patel M, Fisher JP (2008) Biomaterial scaffolds in pediatric tissue engineering. Pediatr Res 63(5):497–501CrossRefPubMed
12.
go back to reference Grethel EJ et al (2006) Prosthetic patches for congenital diaphragmatic hernia repair: surgisis vs gore-tex. J Pediatr Surg 41(1):29–33 (discussion 29–33) CrossRefPubMed Grethel EJ et al (2006) Prosthetic patches for congenital diaphragmatic hernia repair: surgisis vs gore-tex. J Pediatr Surg 41(1):29–33 (discussion 29–33) CrossRefPubMed
13.
go back to reference Laituri CA et al (2010) Outcome of congenital diaphragmatic hernia repair depending on patch type. Eur J Pediatr Surg 20(6):363–365CrossRefPubMed Laituri CA et al (2010) Outcome of congenital diaphragmatic hernia repair depending on patch type. Eur J Pediatr Surg 20(6):363–365CrossRefPubMed
14.
go back to reference Konstantinovic ML et al (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112(11):1554–1560CrossRefPubMed Konstantinovic ML et al (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112(11):1554–1560CrossRefPubMed
15.
go back to reference Badylak S et al (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202CrossRefPubMed Badylak S et al (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202CrossRefPubMed
16.
go back to reference Brown BN et al (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987CrossRefPubMed Brown BN et al (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987CrossRefPubMed
17.
go back to reference Lin HK et al (2014) Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. Tissue Eng Part B Rev 20(1):73–83CrossRefPubMed Lin HK et al (2014) Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. Tissue Eng Part B Rev 20(1):73–83CrossRefPubMed
18.
go back to reference Owen TJ et al (1997) Calcification potential of small intestinal submucosa in a rat subcutaneous model. J Surg Res 71(2):179–186CrossRefPubMed Owen TJ et al (1997) Calcification potential of small intestinal submucosa in a rat subcutaneous model. J Surg Res 71(2):179–186CrossRefPubMed
19.
go back to reference Petter-Puchner A (2007) Adverse effects of porcine small intestine submucosa implants in experimental ventral hernia repair. Surg Endosc 21(5):830–831CrossRefPubMed Petter-Puchner A (2007) Adverse effects of porcine small intestine submucosa implants in experimental ventral hernia repair. Surg Endosc 21(5):830–831CrossRefPubMed
20.
go back to reference Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848CrossRefPubMed Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848CrossRefPubMed
21.
go back to reference Zhou Y et al (2011) Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration. Tissue Eng Part A 17(23–24):2981–2997CrossRefPubMed Zhou Y et al (2011) Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration. Tissue Eng Part A 17(23–24):2981–2997CrossRefPubMed
22.
go back to reference Klinger A et al (2016) Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Hernia 20(1):161–170CrossRefPubMed Klinger A et al (2016) Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Hernia 20(1):161–170CrossRefPubMed
23.
go back to reference Chang CW et al (2016) Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications. PLoS One 11(4):e0153412CrossRefPubMedPubMedCentral Chang CW et al (2016) Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications. PLoS One 11(4):e0153412CrossRefPubMedPubMedCentral
24.
go back to reference Chung SY et al (2005) Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol 174(1):353–359CrossRefPubMed Chung SY et al (2005) Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol 174(1):353–359CrossRefPubMed
25.
go back to reference Du XF et al (2012) Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits. Int J Pediatr Otorhinolaryngol 76(3):345–351CrossRefPubMed Du XF et al (2012) Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits. Int J Pediatr Otorhinolaryngol 76(3):345–351CrossRefPubMed
26.
go back to reference Urita Y et al (2008) Evaluation of diaphragmatic hernia repair using PLGA mesh-collagen sponge hybrid scaffold: an experimental study in a rat model. Pediatr Surg Int 24(9):1041–1045CrossRefPubMed Urita Y et al (2008) Evaluation of diaphragmatic hernia repair using PLGA mesh-collagen sponge hybrid scaffold: an experimental study in a rat model. Pediatr Surg Int 24(9):1041–1045CrossRefPubMed
27.
go back to reference Qin HH, Dunn JC (2011) Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model. J Surg Res 171(1):e21–e26CrossRefPubMedPubMedCentral Qin HH, Dunn JC (2011) Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model. J Surg Res 171(1):e21–e26CrossRefPubMedPubMedCentral
28.
go back to reference Monteiro Carvalho Mori da Cunha MG et al (2015) Amniotic fluid derived stem cells with a renal progenitor phenotype inhibit interstitial fibrosis in renal ischemia and reperfusion injury in rats. PLoS One 10(8):e0136145CrossRefPubMedPubMedCentral Monteiro Carvalho Mori da Cunha MG et al (2015) Amniotic fluid derived stem cells with a renal progenitor phenotype inhibit interstitial fibrosis in renal ischemia and reperfusion injury in rats. PLoS One 10(8):e0136145CrossRefPubMedPubMedCentral
29.
go back to reference Zia SQM et al (2016) Human amniotic fluid stem cells modulate muscle regeneration after cardiotoxin injury in mice. J Stem Cell Res Ther 6:339CrossRef Zia SQM et al (2016) Human amniotic fluid stem cells modulate muscle regeneration after cardiotoxin injury in mice. J Stem Cell Res Ther 6:339CrossRef
30.
go back to reference Torres DS et al (2000) Tendon cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials 21(15):1607–1619CrossRefPubMed Torres DS et al (2000) Tendon cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials 21(15):1607–1619CrossRefPubMed
31.
go back to reference Allman AJ et al (2001) Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71(11):1631–1640CrossRefPubMed Allman AJ et al (2001) Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71(11):1631–1640CrossRefPubMed
32.
go back to reference Brown BN et al (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802CrossRefPubMedPubMedCentral Brown BN et al (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802CrossRefPubMedPubMedCentral
33.
go back to reference Badylak SF et al (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842CrossRefPubMed Badylak SF et al (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842CrossRefPubMed
34.
go back to reference Barker DA et al (2013) Multilayer cell-seeded polymer nanofiber constructs for soft-tissue reconstruction. JAMA Otolaryngol Head Neck Surg 139(9):914–922CrossRefPubMed Barker DA et al (2013) Multilayer cell-seeded polymer nanofiber constructs for soft-tissue reconstruction. JAMA Otolaryngol Head Neck Surg 139(9):914–922CrossRefPubMed
35.
go back to reference Dobreva MP et al (2010) On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 54(5):761–777CrossRefPubMed Dobreva MP et al (2010) On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 54(5):761–777CrossRefPubMed
Metadata
Title
Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid
Authors
F. Lesage
S. Pranpanus
F. M. Bosisio
M. Jacobs
S. Ospitalieri
J. Toelen
J. Deprest
Publication date
01-12-2017
Publisher
Springer Paris
Published in
Hernia / Issue 6/2017
Print ISSN: 1265-4906
Electronic ISSN: 1248-9204
DOI
https://doi.org/10.1007/s10029-017-1635-6

Other articles of this Issue 6/2017

Hernia 6/2017 Go to the issue